Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Parkinsons Dis ; 10(1): 93, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684669

RESUMEN

Loss-of-function variants in the PRKN gene encoding the ubiquitin E3 ligase PARKIN cause autosomal recessive early-onset Parkinson's disease (PD). Extensive in vitro and in vivo studies have reported that PARKIN is involved in multiple pathways of mitochondrial quality control, including mitochondrial degradation and biogenesis. However, these findings are surrounded by substantial controversy due to conflicting experimental data. In addition, the existing PARKIN-deficient mouse models have failed to faithfully recapitulate PD phenotypes. Therefore, we have investigated the mitochondrial role of PARKIN during ageing and in response to stress by employing a series of conditional Parkin knockout mice. We report that PARKIN loss does not affect oxidative phosphorylation (OXPHOS) capacity and mitochondrial DNA (mtDNA) levels in the brain, heart, and skeletal muscle of aged mice. We also demonstrate that PARKIN deficiency does not exacerbate the brain defects and the pro-inflammatory phenotype observed in mice carrying high levels of mtDNA mutations. To rule out compensatory mechanisms activated during embryonic development of Parkin-deficient mice, we generated a mouse model where loss of PARKIN was induced in adult dopaminergic (DA) neurons. Surprisingly, also these mice did not show motor impairment or neurodegeneration, and no major transcriptional changes were found in isolated midbrain DA neurons. Finally, we report a patient with compound heterozygous PRKN pathogenic variants that lacks PARKIN and has developed PD. The PARKIN deficiency did not impair OXPHOS activities or induce mitochondrial pathology in skeletal muscle from the patient. Altogether, our results argue that PARKIN is dispensable for OXPHOS function in adult mammalian tissues.

3.
Methods Mol Biol ; 2675: 181-194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258764

RESUMEN

Feeding of stable 13C-labeled compounds coupled to mass spectrometric analysis has enabled the characterization of dynamic metabolite partitioning in various experimental conditions. This information is particularly relevant for the study and functional understanding of brain metabolic heterogeneity. We here describe a protocol for the analysis of metabolic enrichment analysis upon feeding of murine acute cerebellar slices with 13C-labeled substrates.


Asunto(s)
Encéfalo , Ratones , Animales , Marcaje Isotópico/métodos , Isótopos de Carbono/química , Espectrometría de Masas
4.
Methods Mol Biol ; 2615: 107-117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807788

RESUMEN

Mitochondria are equipped with their own DNA (mtDNA), which is packed into structures termed nucleoids . While nucleoids can be visualized in situ by fluorescence microscopy , the advent of super-resolution microscopy , and in particular of stimulated emission depletion (STED), has recently enabled the visualization of nucleoids at sub-diffraction resolution. Super-resolution microscopy has proved an invaluable tool for addressing fundamental questions in mitochondrial biology. In this chapter I describe how to achieve efficient labeling of mtDNA and how to quantify nucleoid diameter using an automated approach in fixed cultured cells by STED microscopy .


Asunto(s)
ADN Mitocondrial , Mitocondrias , Mitocondrias/genética , Microscopía Fluorescente , ADN Mitocondrial/genética , Células Cultivadas
5.
Cell ; 185(13): 2309-2323.e24, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35662414

RESUMEN

The mitochondrial genome encodes 13 components of the oxidative phosphorylation system, and altered mitochondrial transcription drives various human pathologies. A polyadenylated, non-coding RNA molecule known as 7S RNA is transcribed from a region immediately downstream of the light strand promoter in mammalian cells, and its levels change rapidly in response to physiological conditions. Here, we report that 7S RNA has a regulatory function, as it controls levels of mitochondrial transcription both in vitro and in cultured human cells. Using cryo-EM, we show that POLRMT dimerization is induced by interactions with 7S RNA. The resulting POLRMT dimer interface sequesters domains necessary for promoter recognition and unwinding, thereby preventing transcription initiation. We propose that the non-coding 7S RNA molecule is a component of a negative feedback loop that regulates mitochondrial transcription in mammalian cells.


Asunto(s)
ADN Mitocondrial , Proteínas Mitocondriales , Animales , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Dimerización , Humanos , Mamíferos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ARN/metabolismo , ARN Mitocondrial , ARN Citoplasmático Pequeño , Partícula de Reconocimiento de Señal , Transcripción Genética
6.
Cell Rep ; 38(7): 110370, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172139

RESUMEN

The transition between quiescence and activation in neural stem and progenitor cells (NSPCs) is coupled with reversible changes in energy metabolism with key implications for lifelong NSPC self-renewal and neurogenesis. How this metabolic plasticity is ensured between NSPC activity states is unclear. We find that a state-specific rewiring of the mitochondrial proteome by the i-AAA peptidase YME1L is required to preserve NSPC self-renewal. YME1L controls the abundance of numerous mitochondrial substrates in quiescent NSPCs, and its deletion activates a differentiation program characterized by broad metabolic changes causing the irreversible shift away from a fatty-acid-oxidation-dependent state. Conditional Yme1l deletion in adult NSPCs in vivo results in defective self-renewal and premature differentiation, ultimately leading to NSPC pool depletion. Our results disclose an important role for YME1L in coordinating the switch between metabolic states of NSPCs and suggest that NSPC fate is regulated by compartmentalized changes in protein network dynamics.


Asunto(s)
Células Madre Adultas/metabolismo , Autorrenovación de las Células , Metaloendopeptidasas/metabolismo , Mitocondrias/enzimología , Células-Madre Neurales/metabolismo , Células Madre Adultas/citología , Animales , Proliferación Celular , Ciclo del Ácido Cítrico , Ácidos Grasos/metabolismo , Eliminación de Gen , Metaloendopeptidasas/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/ultraestructura , Células-Madre Neurales/citología , Nucleótidos/metabolismo , Oxidación-Reducción , Proteolisis , Proteoma/metabolismo
7.
Life Sci Alliance ; 4(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34462320

RESUMEN

Mitochondrial transcription factor A (TFAM) is compacting mitochondrial DNA (dmtDNA) into nucleoids and directly controls mtDNA copy number. Here, we show that the TFAM-to-mtDNA ratio is critical for maintaining normal mtDNA expression in different mouse tissues. Moderately increased TFAM protein levels increase mtDNA copy number but a normal TFAM-to-mtDNA ratio is maintained resulting in unaltered mtDNA expression and normal whole animal metabolism. Mice ubiquitously expressing very high TFAM levels develop pathology leading to deficient oxidative phosphorylation (OXPHOS) and early postnatal lethality. The TFAM-to-mtDNA ratio varies widely between tissues in these mice and is very high in skeletal muscle leading to strong repression of mtDNA expression and OXPHOS deficiency. In the heart, increased mtDNA copy number results in a near normal TFAM-to-mtDNA ratio and maintained OXPHOS capacity. In liver, induction of LONP1 protease and mitochondrial RNA polymerase expression counteracts the silencing effect of high TFAM levels. TFAM thus acts as a general repressor of mtDNA expression and this effect can be counterbalanced by tissue-specific expression of regulatory factors.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Animales , Replicación del ADN , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Proteínas del Grupo de Alta Movilidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Front Cell Dev Biol ; 8: 592651, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195262

RESUMEN

The endoplasmic reticulum (ER) and mitochondria are classically regarded as very dynamic organelles in cell lines. Their frequent morphological changes and repositioning underlie the transient generation of physical contact sites (so-called mitochondria-ER contacts, or MERCs) which are believed to support metabolic processes central for cellular signaling and function. The extent of regulation over these organelle dynamics has likely further achieved a higher level of complexity in polarized cells like neurons and astrocytes to match their elaborated geometries and specialized functions, thus ensuring the maintenance of MERCs at metabolically demanding locations far from the soma. Yet, live imaging of adult brain tissue has recently revealed that the true extent of mitochondrial dynamics in astrocytes is significantly lower than in cell culture settings. On one hand, this suggests that organelle dynamics in mature astroglia in vivo may be highly regulated and perhaps triggered only by defined physiological stimuli. On the other hand, this extent of control may greatly facilitate the stabilization of those MERCs required to maintain regionalized metabolic domains underlying key astrocytic functions. In this perspective, we review recent evidence suggesting that the resulting spatial distribution of mitochondria and ER in astrocytes in vivo may create the conditions for maintaining extensive MERCs within specialized territories - like perivascular endfeet - and discuss the possibility that their enrichment at these distal locations may facilitate specific forms of cellular plasticity relevant for physiology and disease.

9.
Hum Mol Genet ; 29(17): 2845-2854, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32766765

RESUMEN

Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation disorder (LBSL) arises from mutations in mitochondrial aspartyl-tRNA synthetase (DARS2) gene. The disease has a childhood or juvenile-onset and is clinically characterized by cerebellar ataxia, cognitive decline and distinct morphological abnormalities upon magnetic resonance imaging. We previously demonstrated that neurons and not adult myelin-producing cells are specifically sensitive to DARS2 loss, hence likely the primary culprit in LBSL disorder. We used conditional Purkinje cell (PCs)-specific Dars2 deletion to elucidate further the cell-type-specific contribution of this class of neurons to the cerebellar impairment observed in LBSL. We show that DARS2 depletion causes a severe mitochondrial dysfunction concomitant with a massive loss of PCs by the age of 15 weeks, thereby rapidly deteriorating motor skills. Our findings conclusively show that DARS2 is indispensable for PC survival and highlights the central role of neuroinflammation in DARS2-related PC degeneration.


Asunto(s)
Aspartato-ARNt Ligasa/deficiencia , Ataxia Cerebelosa/genética , Leucoencefalopatías/genética , Enfermedades Mitocondriales/genética , Vaina de Mielina/genética , Neuronas/metabolismo , Animales , Aspartato-ARNt Ligasa/genética , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Supervivencia Celular/genética , Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/patología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Cerebelo/patología , Humanos , Ácido Láctico/metabolismo , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/patología , Imagen por Resonancia Magnética , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/patología , Mutación/genética , Neuronas/patología , Células de Purkinje/metabolismo , Células de Purkinje/patología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo
10.
Cell Metab ; 31(4): 791-808.e8, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32220306

RESUMEN

Astrocytes have emerged for playing important roles in brain tissue repair; however, the underlying mechanisms remain poorly understood. We show that acute injury and blood-brain barrier disruption trigger the formation of a prominent mitochondrial-enriched compartment in astrocytic endfeet, which enables vascular remodeling. Integrated imaging approaches revealed that this mitochondrial clustering is part of an adaptive response regulated by fusion dynamics. Astrocyte-specific conditional deletion of Mitofusin 2 (Mfn2) suppressed perivascular mitochondrial clustering and disrupted mitochondria-endoplasmic reticulum (ER) contact sites. Functionally, two-photon imaging experiments showed that these structural changes were mirrored by impaired mitochondrial Ca2+ uptake leading to abnormal cytosolic transients within endfeet in vivo. At the tissue level, a compromised vascular complexity in the lesioned area was restored by boosting mitochondrial-ER perivascular tethering in MFN2-deficient astrocytes. These data unmask a crucial role for mitochondrial dynamics in coordinating astrocytic local domains and have important implications for repairing the injured brain.


Asunto(s)
Lesiones Encefálicas/metabolismo , Encéfalo/irrigación sanguínea , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Remodelación Vascular , Animales , Astrocitos , Células Cultivadas , Femenino , GTP Fosfohidrolasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
11.
J Neurosci ; 39(42): 8200-8208, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619488

RESUMEN

Mitochondria play many important biological roles, including ATP production, lipid biogenesis, ROS regulation, and calcium clearance. In neurons, the mitochondrion is an essential organelle for metabolism and calcium homeostasis. Moreover, mitochondria are extremely dynamic and able to divide, fuse, and move along microtubule tracks to ensure their distribution to the neuronal periphery. Mitochondrial dysfunction and altered mitochondrial dynamics are observed in a wide range of conditions, from impaired neuronal development to various neurodegenerative diseases. Novel imaging techniques and genetic tools provide unprecedented access to the physiological roles of mitochondria by visualizing mitochondrial trafficking, morphological dynamics, ATP generation, and ultrastructure. Recent studies using these new techniques have unveiled the influence of mitochondria on axon branching, synaptic function, calcium regulation with the ER, glial cell function, neurogenesis, and neuronal repair. This review provides an overview of the crucial roles played by mitochondria in the CNS in physiological and pathophysiological conditions.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Animales , Humanos , Mitocondrias/patología , Dinámicas Mitocondriales/fisiología , Enfermedades Neurodegenerativas/patología , Neurogénesis/fisiología , Neuronas/patología
12.
PLoS Genet ; 15(6): e1008085, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170154

RESUMEN

Mitochondrial dynamics is an essential physiological process controlling mitochondrial content mixing and mobility to ensure proper function and localization of mitochondria at intracellular sites of high-energy demand. Intriguingly, for yet unknown reasons, severe impairment of mitochondrial fusion drastically affects mtDNA copy number. To decipher the link between mitochondrial dynamics and mtDNA maintenance, we studied mouse embryonic fibroblasts (MEFs) and mouse cardiomyocytes with disruption of mitochondrial fusion. Super-resolution microscopy revealed that loss of outer mitochondrial membrane (OMM) fusion, but not inner mitochondrial membrane (IMM) fusion, leads to nucleoid clustering. Remarkably, fluorescence in situ hybridization (FISH), bromouridine labeling in MEFs and assessment of mitochondrial transcription in tissue homogenates revealed that abolished OMM fusion does not affect transcription. Furthermore, the profound mtDNA depletion in mouse hearts lacking OMM fusion is not caused by defective integrity or increased mutagenesis of mtDNA, but instead we show that mitochondrial fusion is necessary to maintain the stoichiometry of the protein components of the mtDNA replisome. OMM fusion is necessary for proliferating MEFs to recover from mtDNA depletion and for the marked increase of mtDNA copy number during postnatal heart development. Our findings thus link OMM fusion to replication and distribution of mtDNA.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias Cardíacas/genética , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Animales , Variaciones en el Número de Copia de ADN/genética , Replicación del ADN/genética , Fibroblastos , Humanos , Hibridación Fluorescente in Situ , Fusión de Membrana/genética , Ratones , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Mutagénesis , Miocitos Cardíacos/metabolismo , Transcripción Genética
13.
Mol Cell ; 69(1): 9-23.e6, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290614

RESUMEN

How mtDNA replication is terminated and the newly formed genomes are separated remain unknown. We here demonstrate that the mitochondrial isoform of topoisomerase 3α (Top3α) fulfills this function, acting independently of its nuclear role as a component of the Holliday junction-resolving BLM-Top3α-RMI1-RMI2 (BTR) complex. Our data indicate that mtDNA replication termination occurs via a hemicatenane formed at the origin of H-strand replication and that Top3α is essential for resolving this structure. Decatenation is a prerequisite for separation of the segregating unit of mtDNA, the nucleoid, within the mitochondrial network. The importance of this process is highlighted in a patient with mitochondrial disease caused by biallelic pathogenic variants in TOP3A, characterized by muscle-restricted mtDNA deletions and chronic progressive external ophthalmoplegia (CPEO) plus syndrome. Our work establishes Top3α as an essential component of the mtDNA replication machinery and as the first component of the mtDNA separation machinery.


Asunto(s)
Segregación Cromosómica/genética , Replicación del ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Mitocondrial/biosíntesis , Dinámicas Mitocondriales/genética , Línea Celular Tumoral , ADN Mitocondrial/genética , Células HeLa , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Oftalmoplejía Externa Progresiva Crónica/genética
14.
Biochem Biophys Res Commun ; 500(1): 17-25, 2018 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-28676398

RESUMEN

Mitochondria are increasingly recognized for playing important roles in regulating the evolving metabolic state of mammalian cells. This is particularly true for nerve cells, as dysregulation of mitochondrial dynamics is invariably associated with a number of neuropathies. Accumulating evidence now reveals that changes in mitochondrial dynamics and structure may play equally important roles also in the cell biology of astroglial cells. Astroglial cells display significant heterogeneity in their morphology and specialized functions across different brain regions, however besides fundamental differences they seem to share a surprisingly complex meshwork of mitochondria, which is highly suggestive of tightly regulated mechanisms that contribute to maintain this unique architecture. Here, we summarize recent work performed in astrocytes in situ indicating that this may indeed be the case, with astrocytic mitochondrial networks shown to experience rapid dynamic changes in response to defined external cues. Although the mechanisms underlying this degree of mitochondrial re-shaping are far from being understood, recent data suggest that they may contribute to demarcate astrocyte territories undergoing key signalling and metabolic functions.


Asunto(s)
Astrocitos/metabolismo , Lesiones Encefálicas/metabolismo , Enfermedades de los Nervios Craneales/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Animales , Astrocitos/patología , Transporte Biológico , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Calcio/metabolismo , Cerebelo/metabolismo , Cerebelo/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Enfermedades de los Nervios Craneales/genética , Enfermedades de los Nervios Craneales/patología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Mitocondrias/genética , Mitocondrias/patología , Neuronas/metabolismo , Neuronas/patología , Transducción de Señal
15.
Cell Metab ; 26(2): 429-436.e4, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28768180

RESUMEN

Mutations of mtDNA cause mitochondrial diseases and are implicated in age-associated diseases and aging. Pathogenic mtDNA mutations are often present in a fraction of all mtDNA copies, and it has been widely debated whether the proportion of mutant genomes or the absolute number of wild-type molecules determines if oxidative phosphorylation (OXPHOS) will be impaired. Here, we have studied the male infertility phenotype of mtDNA mutator mice and demonstrate that decreasing mtDNA copy number worsens mitochondrial aberrations of spermatocytes and spermatids in testes, whereas an increase in mtDNA copy number rescues the fertility phenotype and normalizes testes morphology as well as spermatocyte proteome changes. The restoration of testes function occurs in spite of unaltered total mtDNA mutation load. We thus demonstrate that increased copy number of mtDNA can efficiently ameliorate a severe disease phenotype caused by mtDNA mutations, which has important implications for developing future strategies for treatment of mitochondrial dysfunction.


Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Infertilidad Masculina , Mutación , Espermatocitos , Testículo , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Infertilidad Masculina/terapia , Masculino , Ratones , Ratones Transgénicos , Espermatocitos/metabolismo , Espermatocitos/patología , Testículo/metabolismo , Testículo/patología
16.
PLoS Genet ; 11(8): e1005423, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26247782

RESUMEN

We have studied the in vivo role of SLIRP in regulation of mitochondrial DNA (mtDNA) gene expression and show here that it stabilizes its interacting partner protein LRPPRC by protecting it from degradation. Although SLIRP is completely dependent on LRPPRC for its stability, reduced levels of LRPPRC persist in the absence of SLIRP in vivo. Surprisingly, Slirp knockout mice are apparently healthy and only display a minor weight loss, despite a 50-70% reduction in the steady-state levels of mtDNA-encoded mRNAs. In contrast to LRPPRC, SLIRP is dispensable for polyadenylation of mtDNA-encoded mRNAs. Instead, deep RNA sequencing (RNAseq) of mitochondrial ribosomal fractions and additional molecular analyses show that SLIRP is required for proper association of mRNAs to the mitochondrial ribosome and efficient translation. Our findings thus establish distinct functions for SLIRP and LRPPRC within the LRPPRC-SLIRP complex, with a novel role for SLIRP in mitochondrial translation. Very surprisingly, our results also demonstrate that mammalian mitochondria have a great excess of transcripts under basal physiological conditions in vivo.


Asunto(s)
Proteínas Mitocondriales/biosíntesis , Proteínas de Neoplasias/metabolismo , Proteínas de Unión al ARN/fisiología , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Poliadenilación , Biosíntesis de Proteínas , Proteolisis , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo
17.
J Clin Invest ; 125(5): 1873-85, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25822020

RESUMEN

Parkin and the glial cell line-derived neurotrophic factor (GDNF) receptor RET have both been independently linked to the dopaminergic neuron degeneration that underlies Parkinson's disease (PD). In the present study, we demonstrate that there is genetic crosstalk between parkin and the receptor tyrosine kinase RET in two different mouse models of PD. Mice lacking both parkin and RET exhibited accelerated dopaminergic cell and axonal loss compared with parkin-deficient animals, which showed none, and RET-deficient mice, in which we found moderate degeneration. Transgenic expression of parkin protected the dopaminergic systems of aged RET-deficient mice. Downregulation of either parkin or RET in neuronal cells impaired mitochondrial function and morphology. Parkin expression restored mitochondrial function in GDNF/RET-deficient cells, while GDNF stimulation rescued mitochondrial defects in parkin-deficient cells. In both cases, improved mitochondrial function was the result of activation of the prosurvival NF-κB pathway, which was mediated by RET through the phosphoinositide-3-kinase (PI3K) pathway. Taken together, these observations indicate that parkin and the RET signaling cascade converge to control mitochondrial integrity and thereby properly maintain substantia nigra pars compacta dopaminergic neurons and their innervation in the striatum. The demonstration of crosstalk between parkin and RET highlights the interplay in the protein network that is altered in PD and suggests potential therapeutic targets and strategies to treat PD.


Asunto(s)
Neuronas Dopaminérgicas/patología , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Degeneración Nerviosa/patología , Trastornos Parkinsonianos/genética , Proteínas Proto-Oncogénicas c-ret/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Ansiedad/genética , Línea Celular , Tamaño de la Célula , Progresión de la Enfermedad , Conducta Exploratoria , Factor Neurotrófico Derivado de la Línea Celular Glial/deficiencia , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/patología , FN-kappa B/fisiología , Trastornos Parkinsonianos/patología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-ret/deficiencia , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Recombinantes de Fusión/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Transducción de Señal , Sustancia Negra/patología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
18.
Neuron ; 85(4): 710-7, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25661179

RESUMEN

Neurogenesis in the dentate gyrus (DG) of the adult hippocampus is a process regulated by experience. To understand whether experience also modifies the connectivity of new neurons, we systematically investigated changes in their innervation following environmental enrichment (EE). We found that EE exposure between 2-6 weeks following neuron birth, rather than merely increasing the number of new neurons, profoundly affected their pattern of monosynaptic inputs. Both local innervation by interneurons and to even greater degree long-distance innervation by cortical neurons were markedly enhanced. Furthermore, following EE, new neurons received inputs from CA3 and CA1 inhibitory neurons that were rarely observed under control conditions. While EE-induced changes in inhibitory innervation were largely transient, cortical innervation remained increased after returning animals to control conditions. Our findings demonstrate an unprecedented experience-dependent reorganization of connections impinging onto adult-born neurons, which is likely to have important impact on their contribution to hippocampal information processing.


Asunto(s)
Encéfalo/fisiología , Período Crítico Psicológico , Ambiente , Actividad Motora/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Encéfalo/citología , Células Cultivadas , Embrión de Mamíferos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Neurogénesis , Plasticidad Neuronal/fisiología , Neuronas/citología , Factores de Tiempo , Transfección
19.
J Cell Biol ; 208(4): 429-42, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25688136

RESUMEN

Mitochondria form a dynamic network within the cell as a result of balanced fusion and fission. Despite the established role of mitofusins (MFN1 and MFN2) in mitochondrial fusion, only MFN2 has been associated with metabolic and neurodegenerative diseases, which suggests that MFN2 is needed to maintain mitochondrial energy metabolism. The molecular basis for the mitochondrial dysfunction encountered in the absence of MFN2 is not understood. Here we show that loss of MFN2 leads to impaired mitochondrial respiration and reduced ATP production, and that this defective oxidative phosphorylation process unexpectedly originates from a depletion of the mitochondrial coenzyme Q pool. Our study unravels an unexpected and novel role for MFN2 in maintenance of the terpenoid biosynthesis pathway, which is necessary for mitochondrial coenzyme Q biosynthesis. The reduced respiratory chain function in cells lacking MFN2 can be partially rescued by coenzyme Q10 supplementation, which suggests a possible therapeutic strategy for patients with diseases caused by mutations in the Mfn2 gene.


Asunto(s)
Transporte de Electrón/genética , GTP Fosfohidrolasas/fisiología , Mitocondrias/enzimología , Ubiquinona/análogos & derivados , Adenosina Trifosfato/biosíntesis , Animales , Células Cultivadas , Dinaminas/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiología , GTP Fosfohidrolasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Dinámicas Mitocondriales/fisiología , Fosforilación Oxidativa , Interferencia de ARN , ARN Interferente Pequeño , Terpenos/metabolismo , Ubiquinona/biosíntesis
20.
EMBO J ; 33(4): 341-55, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24473149

RESUMEN

Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (Ret(MEN2B) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of Ret(MEN2B) significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret-mediated cell protection in a situation relevant for human PD.


Asunto(s)
Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Mitocondrias Musculares/ultraestructura , Atrofia Muscular/prevención & control , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Proto-Oncogénicas c-ret/fisiología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Autofagia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Dopamina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Complejo I de Transporte de Electrón/fisiología , Genes Letales , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Humanos , Neuroblastoma/patología , Neuronas/ultraestructura , Consumo de Oxígeno , Enfermedad de Parkinson , Fenotipo , Proteínas Quinasas/deficiencia , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-ret/genética , Pupa , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...