Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(26): 17738-17746, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957137

RESUMEN

Various Xanthomonas species cause well-known plant diseases. Among various pathogenic factors, the role of α-1,6-cyclized ß-1,2-glucohexadecaose (CßG16α) produced by Xanthomonas campestris pv. campestris was previously shown to be vital for infecting model organisms, Arabidopsis thaliana and Nicotiana benthamiana. However, enzymes responsible for biosynthesizing CßG16α are essentially unknown, which limits the generation of agrichemicals that inhibit CßG16α synthesis. In this study, we discovered that OpgD from X. campestris pv. campestris converts linear ß-1,2-glucan to CßG16α. Structural and functional analyses revealed OpgD from X. campestris pv. campestris possesses an anomer-inverting transglycosylation mechanism, which is unprecedented among glycoside hydrolase family enzymes.


Asunto(s)
Xanthomonas campestris , Xanthomonas campestris/enzimología , Xanthomonas/enzimología , Enfermedades de las Plantas/microbiología , Oligosacáridos/química , Oligosacáridos/metabolismo , Modelos Moleculares
2.
Commun Biol ; 6(1): 961, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735577

RESUMEN

Most Gram-negative bacteria synthesize osmo-regulated periplasmic glucans (OPG) in the periplasm or extracellular space. Pathogenicity of many pathogens is lost by knocking out opgG, an OPG-related gene indispensable for OPG synthesis. However, the biochemical functions of OpgG and OpgD, a paralog of OpgG, have not been elucidated. In this study, structural and functional analyses of OpgG and OpgD from Escherichia coli revealed that these proteins are ß-1,2-glucanases with remarkably different activity from each other, establishing a new glycoside hydrolase family, GH186. Furthermore, a reaction mechanism with an unprecedentedly long proton transfer pathway among glycoside hydrolase families is proposed for OpgD. The conformation of the region that forms the reaction pathway differs noticeably between OpgG and OpgD, which explains the observed low activity of OpgG. The findings enhance our understanding of OPG biosynthesis and provide insights into functional diversity for this novel enzyme family.


Asunto(s)
Glicósido Hidrolasas , Proteínas Periplasmáticas , Glicósido Hidrolasas/genética , Escherichia coli/genética , Metabolismo de los Hidratos de Carbono , Espacio Extracelular , Glucanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...