RESUMEN
Land plants are constantly exposed to environmental stresses and have developed complicated defense systems, including DNA damage response (DDR) and DNA repair systems, to protect plant cells. In Arabidopsis (Arabidopsis thaliana), the transcription factor SUPPRESSOR OF GAMMA RESPONSE1 (SOG1) plays a key role in DDR. Here, we focus on DDR in rice (Oryza sativa)-thought to be a simpler system compared with Arabidopsis due to lack of induction of the endocycle even under DNA damage stress. Rice SOG1 (OsSOG1) and SOG1-like (OsSGL) were identified as putative AtSOG1 orthologs with complete or partial conservation of the serine-glutamine motifs involved in activation via phosphorylation. In addition to OsSOG1 or OsSGL knockout mutants, OsSOG1 nonphosphorylatable mutants (OsSOG1-7A) were generated by homologous recombination-mediated gene targeting. Based on the analysis of DNA damage susceptibility and the effect on the expression of DNA repair-related genes using these mutants, we have demonstrated that OsSOG1 plays a more important role than OsSGL in controlling DDR and DNA repair. OsSOG1-regulated target genes via CTT (N)7 AAG motifs reported previously as AtSOG1 recognition sites. The loss of transcription activity of OsSOG1-7A was not complete compared with OsSOG1-knockout mutants, raising the possibility that other phosphorylation sites might be involved in, or that phosphorylation might not be always required for, the activation of OsSOG1. Furthermore, our findings have highlighted differences in SOG1-mediated DDR between rice and Arabidopsis, especially regarding the transcriptional induction of meiosis-specific recombination-related genes and the response of cell cycle-related genes, revealing rice-specific DDR mechanisms.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oryza/genética , Oryza/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Factores de Transcripción/metabolismoRESUMEN
A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.
Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Iones Pesados , Oryza/genética , Reparación del ADN , Transferencia Lineal de Energía , Oryza/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Gene targeting (GT) is a technique used to modify endogenous genes in target genomes precisely via homologous recombination (HR). Although GT plants are produced using genetic transformation techniques, if the difference between the endogenous and the modified gene is limited to point mutations, GT crops can be considered equivalent to non-genetically modified mutant crops generated by conventional mutagenesis techniques. However, it is difficult to guarantee the non-incorporation of DNA fragments from Agrobacterium in GT plants created by Agrobacterium-mediated GT despite screening with conventional Southern blot and/or PCR techniques. Here, we report a comprehensive analysis of herbicide-tolerant rice plants generated by inducing point mutations in the rice ALS gene via Agrobacterium-mediated GT. We performed genome comparative genomic hybridization (CGH) array analysis and whole-genome sequencing to evaluate the molecular composition of GT rice plants. Thus far, no integration of Agrobacterium-derived DNA fragments has been detected in GT rice plants. However, >1,000 single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were found in GT plants. Among these mutations, 20-100 variants might have some effect on expression levels and/or protein function. Information about additive mutations should be useful in clearing out unwanted mutations by backcrossing.
Asunto(s)
Genoma de Planta/genética , Herbicidas/farmacología , Oryza/genética , Acetolactato Sintasa/genética , Agrobacterium/genética , Hibridación Genómica Comparativa , Productos Agrícolas , Marcación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Oryza/efectos de los fármacos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Mutación Puntual , Análisis de Secuencia de ADNRESUMEN
The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.
Asunto(s)
Sequías , Genes de Plantas , Oryza/crecimiento & desarrollo , Oryza/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo , Adaptación Biológica/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Orden Génico , Genotipo , Datos de Secuencia Molecular , Fenotipo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/citologíaRESUMEN
Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological data and used them to develop statistical models for the endogenous and external influences on gene expression. Our results indicate that the transcriptome dynamics are predominantly governed by endogenous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data revealed diurnal gates for environmental stimuli to influence transcription and pointed to relative influences exerted by circadian and environmental factors on different metabolic genes. The model also generated predictions for the influence of changing temperatures on transcriptome dynamics. We anticipate that our models will help translate the knowledge amassed in laboratories to problems in agriculture and that our approach to deciphering the transcriptome fluctuations in complex environments will be applicable to other organisms.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Modelos Estadísticos , Oryza/genética , Transcriptoma , Clima , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Ambiente , Genes de Plantas , Luz , Oryza/fisiologíaRESUMEN
Rice (Oryza sativa) is the most aluminum (Al)-tolerant crop among small-grain cereals, but the mechanism underlying its high Al resistance is still not well understood. To understand the mechanisms underlying high Al-tolerance, we performed a comparative genome-wide transcriptional analysis by comparing expression profiling between the Al-tolerance cultivar (Koshihikari) and an Al-sensitive mutant star1 (SENSITIVE TO AL RHIZOTOXICITY 1) in both the root tips and the basal roots. Exposure to 20 µM AlCl(3) for 6 h resulted in up-regulation (higher than 3-fold) of 213 and 2015 genes including 185 common genes in the root tips of wild-type and the mutant, respectively. On the other hand, in the basal root, genes up-regulated by Al were 126 and 2419 including 76 common genes in the wild-type and the mutant, respectively. These results indicate that Al-response genes are not only restricted to the root tips, but also in the basal root region. Analysis with genes up- or down-regulated only in the wild-type reveals that there are other mechanisms for Al-tolerance except for a known transcription factor ART1-regulated one in rice. These mechanisms are related to nitrogen assimilation, secondary metabolite synthesis, cell-wall synthesis and ethylene synthesis. Although the exact roles of these putative tolerance genes remain to be examined, our data provide a platform for further work on Al-tolerance in rice.
Asunto(s)
Aluminio/toxicidad , Oryza/efectos de los fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Tolerancia a Medicamentos/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismoRESUMEN
Magnesium (Mg)-mediated alleviation of aluminum (Al) toxicity has been observed in a number of plant species, but the mechanisms underlying the alleviation are still poorly understood. When a putative rice (Oryza sativa) Mg transporter gene, Oryza sativa MAGNESIUM TRANSPORTER1 (OsMGT1), was knocked out, the tolerance to Al, but not to cadmium and lanthanum, was decreased. However, this inhibition could be rescued by addition of 10 µm Mg, but not by the same concentration of barium or strontium. OsMGT1 was expressed in both the roots and shoots in the absence of Al, but the expression only in the roots was rapidly up-regulated by Al. Furthermore, the expression did not respond to low pH and other metals including cadmium and lanthanum, and was regulated by an Al-responsive transcription factor, AL RESISTANCE TRANSCRIPTION FACTOR1. An investigation of subcellular localization showed that OsMGT1 was localized to the plasma membrane. A short-term (30 min) uptake experiment with stable isotope (25)Mg showed that knockout of OsMGT1 resulted in decreased Mg uptake, but that the uptake in the wild type was enhanced by Al. Mg concentration in the cell sap of the root tips was also increased in the wild-type rice, but not in the knockout lines in the presence of Al. A microarray analysis showed that transcripts of genes related to stress were more up- and down-regulated in the knockout lines. Taken together, our results indicate that OsMGT1 is a transporter for Mg uptake in the roots and that up-regulation of this gene is required for conferring Al tolerance in rice by increasing Mg concentration in the cell.
Asunto(s)
Adaptación Fisiológica/genética , Aluminio/toxicidad , Proteínas de Transporte de Catión/genética , Magnesio/metabolismo , Oryza/genética , Oryza/fisiología , Regulación hacia Arriba/genética , Adaptación Fisiológica/efectos de los fármacos , Proteínas de Transporte de Catión/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Citratos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes de Plantas/genética , Magnesio/farmacología , Datos de Secuencia Molecular , Oryza/efectos de los fármacos , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Transporte de Proteínas/efectos de los fármacos , Análisis de Secuencia de ADN , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacosRESUMEN
The circadian clock controls physiological traits such as flowering time, photosynthesis, and growth in plants under laboratory conditions. Under natural field conditions, however, little is known about the significance of the circadian clock in plants. By time-course transcriptome analyses of rice (Oryza sativa) leaves, using a newly isolated rice circadian clock-related mutant carrying a null mutation in Os-GIGANTEA (Os-GI), we show here that Os-GI controlled 75% (false discovery rate = 0.05) of genes among 27,201 genes tested and was required for strong amplitudes and fine-tuning of the diurnal rhythm phases of global gene expression in the field. However, transcripts involved in primary metabolism were not greatly affected by osgi. Time-course metabolome analyses of leaves revealed no trends of change in primary metabolites in osgi plants, and net photosynthetic rates and grain yields were not affected. By contrast, some transcripts and metabolites in the phenylpropanoid metabolite pathway were consistently affected. Thus, net primary assimilation of rice was still robust in the face of such osgi mutation-related circadian clock defects in the field, unlike the case with defects caused by Arabidopsis thaliana toc1 and ztl mutations in the laboratory.
Asunto(s)
Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Proteínas de Plantas/fisiología , Transcriptoma , Secuencia de Bases , Relojes Circadianos/fisiología , Relojes Circadianos/efectos de la radiación , Flores/genética , Flores/fisiología , Flores/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/genética , Luz , Metabolómica , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/fisiología , Oryza/efectos de la radiación , Fenotipo , Fotoperiodo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Análisis de Secuencia de ADN , Factores de TiempoRESUMEN
BACKGROUND: Plant growth depends on synergistic interactions between internal and external signals, and yield potential of crops is a manifestation of how these complex factors interact, particularly at critical stages of development. As an initial step towards developing a systems-level understanding of the biological processes underlying the expression of overall agronomic potential in cereal crops, a high-resolution transcriptome analysis of rice was conducted throughout life cycle of rice grown under natural field conditions. RESULTS: A wide range of gene expression profiles based on 48 organs and tissues at various developmental stages identified 731 organ/tissue specific genes as well as 215 growth stage-specific expressed genes universally in leaf blade, leaf sheath, and root. Continuous transcriptome profiling of leaf from transplanting until harvesting further elucidated the growth-stage specificity of gene expression and uncovered two major drastic changes in the leaf transcriptional program. The first major change occurred before the panicle differentiation, accompanied by the expression of RFT1, a putative florigen gene in long day conditions, and the downregulation of the precursors of two microRNAs. This transcriptome change was also associated with physiological alterations including phosphate-homeostasis state as evident from the behavior of several key regulators such as miR399. The second major transcriptome change occurred just after flowering, and based on analysis of sterile mutant lines, we further revealed that the formation of strong sink, i.e., a developing grain, is not the major cause but is rather a promoter of this change. CONCLUSIONS: Our study provides not only the genetic basis for functional genomics in rice but also new insight into understanding the critical physiological processes involved in flowering and seed development, that could lead to novel strategies for optimizing crop productivity.