Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-37622047

RESUMEN

Introduction: People with African ancestry have greater stroke risk and greater heritability of stroke risk than people of other ancestries. Given the importance of nitric oxide (NO) in stroke, and recent evidence that alpha globin restricts nitric oxide release from vascular endothelial cells, we hypothesized that alpha globin gene (HBA) deletion would be associated with reduced risk of incident ischemic stroke. Methods: We evaluated 8,947 participants self-reporting African ancestry in the national, prospective Reasons for Geographic And Racial Differences in Stroke (REGARDS) cohort. Incident ischemic stroke was defined as non-hemorrhagic stroke with focal neurological deficit lasting ≥ 24 hours confirmed by the medical record or focal or non-focal neurological deficit with positive imaging confirmed with medical records. Genomic DNA was analyzed using droplet digital PCR to determine HBA copy number. Multivariable Cox proportional hazards regression was used to estimate the hazard ratio (HR) of HBA copy number on time to first ischemic stroke. Results: Four-hundred seventy-nine (5.3%) participants had an incident ischemic stroke over a median (IQR) of 11.0 (5.7, 14.0) years' follow-up. HBA copy number ranged from 2 to 6: 368 (4%) -α/-α, 2,480 (28%) -α/αα, 6,014 (67%) αα/αα, 83 (1%) ααα/αα and 2 (<1%) ααα/ααα. The adjusted HR of ischemic stroke with HBA copy number was 1.04; 95%CI 0.89, 1.21; p = 0.66. Conclusions: Although a reduction in HBA copy number is expected to increase endothelial nitric oxide signaling in the human vascular endothelium, HBA copy number was not associated with incident ischemic stroke in this large cohort of Black Americans.

2.
Cancer Chemother Pharmacol ; 92(1): 39-50, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249624

RESUMEN

PURPOSE: It has become increasingly clear that new multiagent combination regimens are required to improve survival rates in acute myeloid leukemia (AML). We recently reported that ART631, a first-in-class 2-carbon-linked artemisinin-derived dimer (2C-ART), was not only efficacious as a component of a novel three-drug combination regimen to treat AML, but, like other synthetic artemisinin derivatives, demonstrated low clinical toxicity. However, we ultimately found ART631 to have suboptimal solubility and stability properties, thus limiting its potential for clinical development. METHODS: We assessed 22 additional 2C-ARTs with documented in vivo antimalarial activity for antileukemic efficacy and physicochemical properties. Our strategy involved culling out 2C-ARTs inferior to ART631 with respect to potency, stability, and solubility in vitro, and then validating in vivo pharmacokinetics, pharmacodynamics, and efficacy of one 2C-ART lead compound. RESULTS: Of the 22 2C-ARTs, ART714 was found to have the most optimal in vitro solubility, stability, and antileukemic efficacy, both alone and in combination with the BCL2 inhibitor venetoclax (VEN) and the kinase inhibitor sorafenib (SOR). ART714 was also highly effective in combination with VEN and the FMS-like tyrosine kinase 3 inhibitor gilteritinib (GILT) against MOLM14 AML xenografts. CONCLUSION: We identified ART714 as our best-in-class antileukemic 2C-ART, based on in vitro potency and pharmacologic properties. We established its in vivo pharmacokinetics and demonstrated its in vitro cooperativity with VEN and SOR and in vivo activities of combinations of ART714, VEN, and GILT. Additional research is indicated to define the optimal niche for the use of ART714 in treatment of AML.


Asunto(s)
Antimaláricos , Antineoplásicos , Artemisininas , Leucemia Mieloide Aguda , Humanos , Carbono/uso terapéutico , Antineoplásicos/farmacología , Antimaláricos/farmacología , Sorafenib/uso terapéutico , Artemisininas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico
3.
medRxiv ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36993674

RESUMEN

Introduction: People with African ancestry have greater stroke risk and greater heritability of stroke risk than people of other ancestries. Given the importance of nitric oxide (NO) in stroke, and recent evidence that alpha globin restricts nitric oxide release from vascular endothelial cells, we hypothesized that alpha globin gene ( HBA) deletion would be associated with reduced risk of incident ischemic stroke. Methods: We evaluated 8,947 participants self-reporting African ancestry in the national, prospective Reasons for Geographic And Racial Differences in Stroke (REGARDS) cohort. Incident ischemic stroke was defined as non-hemorrhagic stroke with focal neurological deficit lasting ≥ 24 hours confirmed by the medical record or focal or non-focal neurological deficit with positive imaging confirmed with medical records. Genomic DNA was analyzed using droplet digital PCR to determine HBA copy number. Multivariable Cox proportional hazards regression was used to estimate the hazard ratio (HR) of HBA copy number on time to first ischemic stroke. Results: Four-hundred seventy-nine (5.3%) participants had an incident ischemic stroke over a median (IQR) of 11.0 (5.7, 14.0) years' follow-up. HBA copy number ranged from 2 to 6: 368 (4%) -α/-α, 2,480 (28%) -α/αα, 6,014 (67%) αα/αα, 83 (1%) ααα/αα and 2 (<1%) ααα/ααα. The adjusted HR of ischemic stroke with HBA copy number was 1.04; 95%CI 0.89, 1.21; p = 0.66. Conclusions: Although a reduction in HBA copy number is expected to increase endothelial nitric oxide signaling in the human vascular endothelium, HBA copy number was not associated with incident ischemic stroke in this large cohort of Black Americans.

4.
PLoS One ; 17(7): e0271031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35834496

RESUMEN

BACKGROUND: Alpha globin is expressed in the endothelial cells of human resistance arteries where it binds to endothelial nitric oxide synthase and limits release of the vasodilator nitric oxide. Genomic deletion of the alpha globin gene (HBA) is common among Black Americans and could lead to increased endothelial nitric oxide signaling and reduced risk of hypertension. METHODS: Community-dwelling US adults aged 45 years or older were enrolled and examined from 2003 to 2007, followed by telephone every 6 months, and reexamined from 2013 to 2016. At both visits, trained personnel performed standardized, in-home blood pressure measurements and pill bottle review. Prevalent hypertension was defined as systolic blood pressure ≥ 140mmHg or diastolic blood pressure ≥ 90mmHg or anti-hypertensive medication use. Droplet digital PCR was used to determine HBA copy number. The associations of HBA copy number with prevalent hypertension, resistant hypertension, and incident hypertension were estimated using multivariable regression. RESULTS: Among 9,684 Black participants, 7,439 (77%) had hypertension at baseline and 1,044 of those had treatment-resistant hypertension. 1,000 participants were not hypertensive at baseline and participated in a follow up visit; 517 (52%) developed hypertension over median 9.2 years follow-up. Increased HBA copy number was not associated with prevalent hypertension (PR = 1.00; 95%CI 0.98,1.02), resistant hypertension (PR = 0.95; 95%CI 0.86,1.05), or incident hypertension (RR = 0.96; 95%CI 0.86,1.07). CONCLUSIONS: There were no associations between increased HBA copy number and risk of hypertension. These findings suggest that variation in alpha globin gene copy number does not modify the risk of hypertension among Black American adults.


Asunto(s)
Dosificación de Gen , Hipertensión , Globinas alfa , Presión Sanguínea/genética , Células Endoteliales , Dosificación de Gen/genética , Humanos , Hipertensión/genética , Óxido Nítrico/uso terapéutico , Estudios Prospectivos , Factores de Riesgo , Globinas alfa/genética
5.
Oncogene ; 41(19): 2663-2671, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35430605

RESUMEN

Brain tumors result in significant morbidity and mortality in both children and adults. Recent data indicate that immunotherapies may offer a survival benefit after standard of care has failed for malignant brain tumors. Modest results from several late phase clinical trials, however, underscore the need for more refined, comprehensive strategies that incorporate new mechanistic and pharmacologic knowledge. Recently, oncometabolism has emerged as an adjunct modality for combinatorial treatment approaches necessitated by the aggressive, refractory nature of high-grade glioma and other progressive malignant brain tumors. Manipulation of metabolic processes in cancer and immune cells that comprise the tumor microenvironment through controlled targeting of oncogenic pathways may be utilized to maximize the efficacy of immunotherapy and improve patient outcomes. Herein, we summarize preclinical and early phase clinical trial research of oncometabolism-based therapeutics that may augment immunotherapy by exploiting the biochemical and genetic underpinnings of brain tumors. We also examine metabolic pathways related to immune cells that target tumor cells, termed "tumor immunometabolism". Specifically, we focus on glycolysis and altered glucose metabolism, including glucose transporters, hexokinase, pyruvate dehydrogenase, and lactate dehydrogenase, glutamine, and we discuss targeting arginase, adenosine, and indoleamine 2,3-dioxygenase, and toll-like receptors. Lastly, we summarize future directions targeting metabolism in combination with emerging therapies such as oncolytic virotherapy, vaccines, and chimeric antigen receptor T cells.


Asunto(s)
Neoplasias Encefálicas , Glioma , Viroterapia Oncolítica , Adulto , Neoplasias Encefálicas/genética , Niño , Glioma/terapia , Humanos , Inmunoterapia/métodos , Viroterapia Oncolítica/métodos , Microambiente Tumoral
6.
J Am Soc Nephrol ; 33(1): 213-224, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34706968

RESUMEN

BACKGROUND: α-Globin is expressed in endothelial cells of resistance arteries, where it limits endothelial nitric oxide signaling and enhances α-adrenergic-mediated vasoconstriction. α-Globin gene (HBA) copy number is variable in people of African descent and other populations worldwide. Given the protective effect of nitric oxide in the kidney, we hypothesized that HBA copy number would be associated with kidney disease risk. METHODS: Community-dwelling Black Americans aged ≥45 years old were enrolled in a national longitudinal cohort from 2003 through 2007. HBA copy number was measured using droplet digital PCR. The prevalence ratio (PR) of CKD and the relative risk (RR) of incident reduced eGFR were calculated using modified Poisson multivariable regression. The hazard ratio (HR) of incident ESKD was calculated using Cox proportional hazards multivariable regression. RESULTS: Among 9908 participants, HBA copy number varied from 2 to 6. In analyses adjusted for demographic, clinical, and genetic risk factors, a one-copy increase in HBA was associated with 14% greater prevalence of CKD (PR, 1.14; 95% CI, 1.07 to 1.21; P<0.0001). While HBA copy number was not associated with incident reduced eGFR (RR, 1.06; 95% CI, 0.94 to 1.19; P=0.38), the hazard of incident ESKD was 32% higher for each additional copy of HBA (HR, 1.32; 95% CI, 1.09 to 1.61; P=0.005). CONCLUSIONS: Increasing HBA copy number was associated with a greater prevalence of CKD and incidence of ESKD in a national longitudinal cohort of Black Americans.


Asunto(s)
Negro o Afroamericano/estadística & datos numéricos , Dosificación de Gen , Fallo Renal Crónico/etnología , Fallo Renal Crónico/genética , Globinas alfa/genética , Anciano , Femenino , Tasa de Filtración Glomerular , Humanos , Incidencia , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Prevalencia , Modelos de Riesgos Proporcionales
7.
Bioorg Med Chem Lett ; 41: 127974, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771585

RESUMEN

Lactate dehydrogenase (LDH) is a critical enzyme in the glycolytic metabolism pathway that is used by many tumor cells. Inhibitors of LDH may be expected to inhibit the metabolic processes in cancer cells and thus selectively delay or inhibit growth in transformed versus normal cells. We have previously disclosed a pyrazole-based series of potent LDH inhibitors with long residence times on the enzyme. Here, we report the elaboration of a new subseries of LDH inhibitors based on those leads. These new compounds potently inhibit both LDHA and LDHB enzymes, and inhibit lactate production in cancer cell lines.


Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Éteres/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , Compuestos de Anilina/química , Antineoplásicos/química , Línea Celular Tumoral , Éteres/química , Humanos , L-Lactato Deshidrogenasa/química
8.
Blood Adv ; 5(3): 711-724, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33560385

RESUMEN

Artemisinins are active against human leukemia cell lines and have low clinical toxicity in worldwide use as antimalarials. Because multiagent combination regimens are necessary to cure fully evolved leukemias, we sought to leverage our previous finding that artemisinin analogs synergize with kinase inhibitors, including sorafenib (SOR), by identifying additional synergistic antileukemic drugs with low toxicity. Screening of a targeted antineoplastic drug library revealed that B-cell lymphoma 2 (BCL2) inhibitors synergize with artemisinins, and validation assays confirmed that the selective BCL2 inhibitor, venetoclax (VEN), synergized with artemisinin analogs to inhibit growth and induce apoptotic cell death of multiple acute leukemia cell lines in vitro. An oral 3-drug "SAV" regimen (SOR plus the potent artemisinin-derived trioxane diphenylphosphate 838 dimeric analog [ART838] plus VEN) killed leukemia cell lines and primary cells in vitro. Leukemia cells cultured in ART838 had decreased induced myeloid leukemia cell differentiation protein (MCL1) levels and increased levels of DNA damage-inducible transcript 3 (DDIT3; GADD153) messenger RNA and its encoded CCATT/enhancer-binding protein homologous protein (CHOP), a key component of the integrated stress response. Thus, synergy of the SAV combination may involve combined targeting of MCL1 and BCL2 via discrete, tolerable mechanisms, and cellular levels of MCL1 and DDIT3/CHOP may serve as biomarkers for action of artemisinins and SAV. Finally, SAV treatment was tolerable and resulted in deep responses with extended survival in 2 acute myeloid leukemia (AML) cell line xenograft models, both harboring a mixed lineage leukemia gene rearrangement and an FMS-like receptor tyrosine kinase-3 internal tandem duplication, and inhibited growth in 2 AML primagraft models.


Asunto(s)
Artemisininas , Compuestos Bicíclicos Heterocíclicos con Puentes , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Sorafenib , Sulfonamidas
9.
Sci Rep ; 11(1): 2121, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483532

RESUMEN

The spread of Plasmodium falciparum parasites resistant to most first-line antimalarials creates an imperative to enrich the drug discovery pipeline, preferably with curative compounds that can also act prophylactically. We report a phenotypic quantitative high-throughput screen (qHTS), based on concentration-response curves, which was designed to identify compounds active against Plasmodium liver and asexual blood stage parasites. Our qHTS screened over 450,000 compounds, tested across a range of 5 to 11 concentrations, for activity against Plasmodium falciparum asexual blood stages. Active compounds were then filtered for unique structures and drug-like properties and subsequently screened in a P. berghei liver stage assay to identify novel dual-active antiplasmodial chemotypes. Hits from thiadiazine and pyrimidine azepine chemotypes were subsequently prioritized for resistance selection studies, yielding distinct mutations in P. falciparum cytochrome b, a validated antimalarial drug target. The thiadiazine chemotype was subjected to an initial medicinal chemistry campaign, yielding a metabolically stable analog with sub-micromolar potency. Our qHTS methodology and resulting dataset provides a large-scale resource to investigate Plasmodium liver and asexual blood stage parasite biology and inform further research to develop novel chemotypes as causal prophylactic antimalarials.


Asunto(s)
Antimaláricos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Hígado/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/química , Evaluación Preclínica de Medicamentos/métodos , Células Hep G2 , Humanos , Hígado/parasitología , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/fisiología , Plasmodium falciparum/genética , Plasmodium falciparum/fisiología , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Reproducibilidad de los Resultados , Relación Estructura-Actividad , Tiadiazinas/química , Tiadiazinas/farmacología
10.
Front Oncol ; 11: 790037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127495

RESUMEN

Acute myeloid leukemia (AML) remains a devastating disease, with low cure rates despite intensive standard chemotherapy regimens. In the past decade, targeted antileukemic drugs have emerged from research efforts. Nevertheless, targeted therapies are often effective for only a subset of patients whose leukemias harbor a distinct mutational or gene expression profile and provide only transient antileukemic responses as monotherapies. We previously presented single agent and combination preclinical data for a novel 3-carbon-linked artemisinin-derived dimer (3C-ART), diphenylphosphate analog 838 (ART838), that indicates a promising approach to treat AML, given its demonstrated synergy with targeted antileukemic drugs and large therapeutic window. We now report new data from our initial evaluation of a structurally distinct class of 2-carbon-linked dimeric artemisinin-derived analogs (2C-ARTs) with prior documented in vivo antimalarial activity. These 2C-ARTs have antileukemic activity at low (nM) concentrations, have similar cooperativity with other antineoplastic drugs and comparable physicochemical properties to ART838, and provide a viable path to clinical development.

11.
J Med Chem ; 63(19): 10984-11011, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32902275

RESUMEN

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.


Asunto(s)
Inhibidores Enzimáticos/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Pirazoles/farmacología , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Semivida , Humanos , Ratones , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cancers (Basel) ; 12(3)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213921

RESUMEN

In ovarian cancer, upregulation of the Wnt/ß-catenin pathway leads to chemoresistance and correlates with T cell exclusion from the tumor microenvironment (TME). Our objectives were to validate these findings in an independent cohort of ovarian cancer subjects and determine whether inhibiting the Wnt pathway in a syngeneic ovarian cancer murine model could create a more T-cell-inflamed TME, which would lead to decreased tumor growth and improved survival. We preformed RNA sequencing in a cohort of human high grade serous ovarian carcinoma subjects. We used CGX1321, an inhibitor to the porcupine (PORCN) enzyme that is necessary for secretion of WNT ligand, in mice with established ID8 tumors, a murine ovarian cancer cell line. In order to investigate the effect of decreased Wnt/ß-catenin pathway activity in the dendritic cells (DCs), we injected ID8 cells in mice that lacked ß-catenin specifically in DCs. Furthermore, to understand how much the effects of blocking the Wnt/ß-catenin pathway are dependent on CD8+ T cells, we injected ID8 cells into mice with CD8+ T cell depletion. We confirmed a negative correlation between Wnt activity and T cell signature in our cohort. Decreasing WNT ligand production resulted in increases in T cell, macrophage and dendritic cell functions, decreased tumor burden and improved survival. Reduced tumor growth was found in mice that lacked ß-catenin specifically in DCs. When CD8+ T cells were depleted, CGX1321 treatment did not have the same magnitude of effect on tumor growth. Our investigation confirmed an increase in Wnt activity correlated with a decreased T-cell-inflamed environment; a relationship that was further supported in our pre-clinical model that suggests inhibiting the Wnt/ß-catenin pathway was associated with decreased tumor growth and improved survival via a partial dependence on CD8+ T cells.

13.
Cell Rep ; 30(6): 1798-1810.e4, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32049011

RESUMEN

The reliance of many cancers on aerobic glycolysis has stimulated efforts to develop lactate dehydrogenase (LDH) inhibitors. However, despite significant efforts, LDH inhibitors (LDHi) with sufficient specificity and in vivo activity to determine whether LDH is a feasible drug target are lacking. We describe an LDHi with potent, on-target, in vivo activity. Using hyperpolarized magnetic resonance spectroscopic imaging (HP-MRSI), we demonstrate in vivo LDH inhibition in two glycolytic cancer models, MIA PaCa-2 and HT29, and we correlate depth and duration of LDH inhibition with direct anti-tumor activity. HP-MRSI also reveals a metabolic rewiring that occurs in vivo within 30 min of LDH inhibition, wherein pyruvate in a tumor is redirected toward mitochondrial metabolism. Using HP-MRSI, we show that inhibition of mitochondrial complex 1 rapidly redirects tumor pyruvate toward lactate. Inhibition of both mitochondrial complex 1 and LDH suppresses metabolic plasticity, causing metabolic quiescence in vitro and tumor growth inhibition in vivo.


Asunto(s)
Quimioterapia Combinada/métodos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Neoplasias/inmunología , Animales , Humanos , Ratones , Neoplasias/tratamiento farmacológico
14.
J Med Chem ; 61(23): 10588-10601, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30392349

RESUMEN

The active sites of hundreds of human α-ketoglutarate (αKG) and Fe(II)-dependent dioxygenases are exceedingly well preserved, which challenges the design of selective inhibitors. We identified a noncatalytic cysteine (Cys481 in KDM5A) near the active sites of KDM5 histone H3 lysine 4 demethylases, which is absent in other histone demethylase families, that could be explored for interaction with the cysteine-reactive electrophile acrylamide. We synthesized analogs of a thienopyridine-based inhibitor chemotype, namely, 2-((3-aminophenyl)(2-(piperidin-1-yl)ethoxy)methyl)thieno[3,2- b]pyridine-7-carboxylic acid (N70) and a derivative containing a (dimethylamino)but-2-enamido)phenyl moiety (N71) designed to form a covalent interaction with Cys481. We characterized the inhibitory and binding activities against KDM5A and determined the cocrystal structures of the catalytic domain of KDM5A in complex with N70 and N71. Whereas the noncovalent inhibitor N70 displayed αKG-competitive inhibition that could be reversed after dialysis, inhibition by N71 was dependent on enzyme concentration and persisted even after dialysis, consistent with covalent modification.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína 2 de Unión a Retinoblastoma/antagonistas & inhibidores , Acrilamida/química , Línea Celular , Humanos , Modelos Moleculares , Conformación Proteica , Proteína 2 de Unión a Retinoblastoma/química
15.
PLoS Biol ; 16(8): e2006134, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30080846

RESUMEN

Cyclic GMP-AMP (cGAMP) synthase (cGAS) stimulator of interferon genes (STING) senses pathogen-derived or abnormal self-DNA in the cytosol and triggers an innate immune defense against microbial infection and cancer. STING agonists induce both innate and adaptive immune responses and are a new class of cancer immunotherapy agents tested in multiple clinical trials. However, STING is commonly silenced in cancer cells via unclear mechanisms, limiting the application of these agonists. Here, we report that the expression of STING is epigenetically suppressed by the histone H3K4 lysine demethylases KDM5B and KDM5C and is activated by the opposing H3K4 methyltransferases. The induction of STING expression by KDM5 blockade triggered a robust interferon response in a cytosolic DNA-dependent manner in breast cancer cells. This response resulted in resistance to infection by DNA and RNA viruses. In human tumors, KDM5B expression is inversely associated with STING expression in multiple cancer types, with the level of intratumoral CD8+ T cells, and with patient survival in cancers with a high level of cytosolic DNA, such as human papilloma virus (HPV)-positive head and neck cancer. These results demonstrate a novel epigenetic regulatory pathway of immune response and suggest that KDM5 demethylases are potential targets for antipathogen treatment and anticancer immunotherapy.


Asunto(s)
Histona Demetilasas/fisiología , Histona Demetilasas con Dominio de Jumonji/fisiología , Proteínas de la Membrana/fisiología , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Línea Celular , Citosol/metabolismo , ADN/metabolismo , Histona Metiltransferasas/fisiología , Histonas/fisiología , Humanos , Inmunidad Innata/fisiología , Inmunoterapia , Interferones/metabolismo , Interferones/fisiología , Células MCF-7 , Proteínas de la Membrana/metabolismo , Transducción de Señal
16.
J Med Chem ; 61(7): 3193-3208, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29537847

RESUMEN

Isomers of chiral drugs can exhibit marked differences in biological activities. We studied the binding and inhibitory activities of 12 compounds against KDM5A. Among them are two pairs of enantiomers representing two distinct inhibitor chemotypes, namely, ( R)- and ( S)-2-((2-chlorophenyl)(2-(piperidin-1-yl)ethoxy)methyl)-1 H-pyrrolo[3,2- b]pyridine-7-carboxylic acid (compounds N51 and N52) and ( R) - and ( S) -N-(1-(3-isopropyl-1 H-pyrazole-5-carbonyl)pyrrolidin-3-yl)cyclopropanecarboxamide (compounds N54 and N55). In vitro, the S enantiomer of the N51/N52 pair (N52) and the R enantiomer of the N54/N55 pair (N54) exhibited about 4- to 5-fold greater binding affinity. The more potent enzyme inhibition of KDM5A by the R-isoform for the cell-permeable N54/N55 pair translated to differences in growth inhibitory activity. We determined structures of the KDM5A catalytic domain in complex with all 12 inhibitors, which revealed the interactions (or lack thereof) responsible for the differences in binding affinity. These results provide insights to guide improvements in binding potency and avenues for development of cell permeable inhibitors of the KDM5 family.


Asunto(s)
Amidas/farmacología , Ciclopropanos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína 2 de Unión a Retinoblastoma/antagonistas & inhibidores , Amidas/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Ciclopropanos/química , Humanos , Modelos Moleculares , Conformación Molecular , Piridinas/síntesis química , Piridinas/farmacología , Estereoisomerismo , Relación Estructura-Actividad , Ensayo de Tumor de Célula Madre
17.
ACS Omega ; 3(10): 12985-12998, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458021

RESUMEN

A novel application of [DTBNpP] Pd(crotyl)Cl (DTBNpP = di-tert-butylneopentylphosphine) (P2), an air-stable, commercially available palladium precatalyst that allows rapid access to a monoligated state, has been identified for room-temperature, copper-free Sonogashira couplings of challenging aryl bromides and alkynes. The mild reaction conditions with TMP in dimethyl sulfoxide afford up to 97% yields, excellent functional group tolerability, and broad reaction compatibility with access to one-pot indole formation.

18.
J Med Chem ; 60(22): 9184-9204, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29120638

RESUMEN

We report the discovery and medicinal chemistry optimization of a novel series of pyrazole-based inhibitors of human lactate dehydrogenase (LDH). Utilization of a quantitative high-throughput screening paradigm facilitated hit identification, while structure-based design and multiparameter optimization enabled the development of compounds with potent enzymatic and cell-based inhibition of LDH enzymatic activity. Lead compounds such as 63 exhibit low nM inhibition of both LDHA and LDHB, submicromolar inhibition of lactate production, and inhibition of glycolysis in MiaPaCa2 pancreatic cancer and A673 sarcoma cells. Moreover, robust target engagement of LDHA by lead compounds was demonstrated using the cellular thermal shift assay (CETSA), and drug-target residence time was determined via SPR. Analysis of these data suggests that drug-target residence time (off-rate) may be an important attribute to consider for obtaining potent cell-based inhibition of this cancer metabolism target.


Asunto(s)
Inhibidores Enzimáticos/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Pirazoles/farmacología , Tiazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Membranas Artificiales , Ratones , Microsomas Hepáticos/efectos de los fármacos , Permeabilidad , Pirazoles/síntesis química , Pirazoles/química , Pirazoles/farmacocinética , Ratas , Solubilidad , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Tiazoles/farmacocinética
19.
Sci Rep ; 6: 37741, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27883049

RESUMEN

Quality control (QC) metrics are critical in high throughput screening (HTS) platforms to ensure reliability and confidence in assay data and downstream analyses. Most reported HTS QC metrics are designed for plate level or single well level analysis. With the advent of high throughput combination screening there is a need for QC metrics that quantify the quality of combination response matrices. We introduce a predictive, interpretable, matrix-level QC metric, mQC, based on a mix of data-derived and heuristic features. mQC accurately reproduces the expert assessment of combination response quality and correctly identifies unreliable response matrices that can lead to erroneous or misleading characterization of synergy. When combined with the plate-level QC metric, Z', mQC provides a more appropriate determination of the quality of a drug combination screen. Retrospective analysis on a number of completed combination screens further shows that mQC is able to identify problematic screens whereas plate-level QC was not able to. In conclusion, our data indicates that mQC is a reliable QC filter that can be used to identify problematic drug combinations matrices and prevent further analysis on erroneously active combinations as well as for troubleshooting failed screens. The R source code of mQC is available at http://matrix.ncats.nih.gov/mQC.


Asunto(s)
Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Combinación de Medicamentos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Control de Calidad , Reproducibilidad de los Resultados , Estudios Retrospectivos
20.
Retrovirology ; 13(1): 71, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27682062

RESUMEN

BACKGROUND: HIV-1 integrase is the target for three FDA-approved drugs, raltegravir, elvitegravir, and dolutegravir. All three drugs bind at the active site of integrase and block the strand transfer step of integration. We previously showed that sub-optimal doses of the anti-HIV drug raltegravir can cause aberrant HIV integrations that are accompanied by a variety of deletions, duplications, insertions and inversions of the adjacent host sequences. RESULTS: We show here that a second drug, elvitegravir, also causes similar aberrant integrations. More importantly, we show that at least two of the three clinically relevant drug resistant integrase mutants we tested, N155H and G140S/Q148H, which reduce the enzymatic activity of integrase, can cause the same sorts of aberrant integrations, even in the absence of drugs. In addition, these drug resistant mutants have an elevated IC50 for anti-integrase drugs, and concentrations of the drugs that would be optimal against the WT virus are suboptimal for the mutants. CONCLUSIONS: We previously showed that suboptimal doses of a drug that binds to the HIV enzyme integrase and blocks the integration of a DNA copy of the viral genome into host DNA can cause aberrant integrations that involve rearrangements of the host DNA. We show here that suboptimal doses of a second anti-integrase drug can cause similar aberrant integrations. We also show that drug-resistance mutations in HIV integrase can also cause aberrant integrations, even in the absence of an anti-integrase drug. HIV DNA integrations in the oncogenes BACH2 and MKL2 that do not involve rearrangements of the viral or host DNA can stimulate the proliferation of infected cells. Based on what is known about the association of DNA rearrangements and the activation of oncogenes in human tumors, it is possible that some of the deletions, duplications, insertions, and inversions of the host DNA that accompany aberrant HIV DNA integrations could increase the chances that HIV integrations could lead to the development of a tumor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...