Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Pharm Bull ; 13(4): 723-735, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38022808

RESUMEN

Several vaccine-induced thrombotic thrombocytopenia syndrome (VITTS) cases have been reported after the ChAdOx1 nCov-19 vaccination. The current study systematically reviewed the reported post-ChAdOx1 nCoV-19 vaccination thrombotic thrombocytopenia cases. Their laboratory and clinical features, as well as the diagnostic and therapeutic measures, were investigated. Online databases were searched until 25 August 2021. Studies reporting post-ChAdOx1 nCov-19 vaccination thrombotic thrombocytopenia syndrome (TTS) were included. Overall, 167 cases (21-77 years old) from 53 publications were included showing a female dominance of 1.75 times. About 85% of the cases exhibited the primary symptoms within the first two weeks post-vaccination. Headache was the most common initial symptom (>44.2%), and hemorrhage/thrombotic problems (22.46%), as well as discoordination/weakness/numbness/ hemiparesis/cyanotic toes (19.6%), were the most prevalent uncommon initial symptoms. Prothrombin time (PT), D-dimers, and C-reactive protein were the most remarkable increased laboratory parameters in 50.6%, 99.1%, and 55.6% of cases, respectively. In comparison, platelet and fibrinogen were the most remarkable decreased laboratory parameters in 92.7% and 50.5% of cases, respectively. Most VITT cases presented with cerebral venous thrombosis/cerebral venous sinus thrombosis, supraventricular tachycardia, transverse sinus/cerebral thrombosis, pulmonary embolism, and cerebral hemorrhage. Anti-PF4 antibody measurement through immunoassays and functional assays were positive in 86.2% and 73% of cases, respectively. About 31% of the cases died. Early diagnosis and proper therapeutic measures are important in ChAdOx1 nCov-19 vaccine-induced VITTS patients. Therefore, experts are recommended to know the corresponding clinical and laboratory features, as well as diagnostic methods. Elucidation of the pathophysiologic mechanism of ChAdOx1 nCov-19 vaccine-induced TTS deserves further investigation.

2.
BMC Gastroenterol ; 23(1): 248, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37482618

RESUMEN

BACKGROUND: Gastric cancer (GC) ranks among the most common malignancies worldwide. This study aimed to find critical genes/pathways in GC pathogenesis. METHODS: Gene interactions were analyzed, and the protein-protein interaction network was drawn. Then enrichment analysis of the hub genes was performed and network cluster analysis and promoter analysis of the hub genes were done. Age/sex analysis was done on the identified genes. RESULTS: Eleven hub genes in GC were identified in the current study (ATP5A1, ATP5B, ATP5D, MT-ATP8, COX7A2, COX6C, ND4, ND6, NDUFS3, RPL8, and RPS16), mostly involved in mitochondrial functions. There was no report on the ATP5D, ND6, NDUFS3, RPL8, and RPS16 in GC. Our results showed that the most affected processes in GC are the metabolic processes, and the oxidative phosphorylation pathway was considerably enriched which showed the significance of mitochondria in GC pathogenesis. Most of the affected pathways in GC were also involved in neurodegenerative diseases. Promoter analysis showed that negative regulation of signal transduction might play an important role in GC pathogenesis. In the analysis of the basal expression pattern of the selected genes whose basal expression presented a change during the age, we found that a change in age may be an indicator of changes in disease insurgence and/or progression at different ages. CONCLUSIONS: These results might open up new insights into GC pathogenesis. The identified genes might be novel diagnostic/prognostic biomarkers or potential therapeutic targets for GC. This work, being based on bioinformatics analysis act as a hypothesis generator that requires further clinical validation.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias Gástricas , Humanos , Biología de Sistemas , Perfilación de la Expresión Génica/métodos , Neoplasias Gástricas/patología , Mapas de Interacción de Proteínas/genética , Regulación Neoplásica de la Expresión Génica
3.
BMC Complement Med Ther ; 23(1): 151, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158952

RESUMEN

BACKGROUND: Paliurus spina-christi Mill. (PSC) fruit is frequently used in the treatment of diabetes mellitus in Mediterranean regions. Here, we investigated the effects of various PSC fruit extracts (PSC-FEs) on glucose consumption and some key mediators of insulin signaling pathways in high glucose and high insulin-induced insulin-resistant HepG2 cells. METHODS: The effects of methanolic, chloroform and total extracts on cell proliferation were assessed by the MTT assay. The potential of non-toxic extracts on glucose utilization in insulin-resistant HepG2 cells was checked using a glucose oxidase assay. AKT and AMP-activated protein kinase (AMPK) pathway activation and mRNA expression levels of insulin receptor (INSR), glucose transporter 1 (GLUT1), and glucose transporters 4 (GLUT4) were determined by western blotting and real-time PCR, respectively. RESULTS: We found that high concentrations of methanolic and both low and high concentrations of total extracts were able to enhance glucose uptake in an insulin-resistant cell line model. Moreover, AKT and AMPK phosphorylation were significantly increased by the high strength of methanolic extract, while total extract raised AMPK activation at low and high concentrations. Also, GLUT 1, GLUT 4, and INSR were elevated by both methanolic and total extracts. CONCLUSIONS: Ultimately, our results shed new light on methanolic and total PSC-FEs as sources of potential anti-diabetic medications, restoring glucose consumption and uptake in insulin-resistant HepG2 cells. These could be at least in part due to re-activating AKT and AMPK signaling pathways and also increased expression of INSR, GLUT1, and GLUT4. Overall, active constituents present in methanolic and total extracts of PCS are appropriate anti-diabetic agents and explain the use of these PSC fruits in traditional medicine for the treatment of diabetes.


Asunto(s)
Rhamnaceae , Transducción de Señal , Células Hep G2 , Humanos , Rhamnaceae/química , Frutas/química , Resistencia a la Insulina , Transducción de Señal/efectos de los fármacos , Glucosa/metabolismo , Insulina/metabolismo , Extractos Vegetales/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
4.
Iran J Pharm Res ; 21(1): e127042, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35873011

RESUMEN

The Coronavirus disease 2019 (COVID-19) pandemic has affected more than 269 million worldwide, with more than five million deaths as of early December 2021. The main concerns in this pandemic include the asymptomatic nature of COVID-19, leading to the infection of many healthy people, the infectious nature of the pathogen, and its high spreading rate. The disease features have highlighted the importance of controlling this pandemic via vaccines. There has been a worldwide race to produce better, more protective, and efficacious vaccines. Simultaneously, different new variants of the virus are emerging. Therefore, there is a concern about the efficacy of the vaccines against new variants. The platform used for COVID-19 vaccine development needs to be flexible enough to enable the manufacturer to react suitably to new virus variants. We performed a comprehensive search in the online databases of PubMed, Scopus, Google Scholar, clinicaltrials.gov, WHO, ICTRP, and Cochrane until December 10th, 2021. There are 331 candidate vaccines in clinical development, with 194 in the preclinical stage and 137 in different clinical phases. Eleven platforms have been used for the development of COVID-19 vaccines, including inactivated/live attenuated virus, protein subunit, virus-like particle (VLP), non-replicating/replicating viral vectors (VVnr or VVr), VVr or VVnr plus antigen-presenting cell, bacterial antigen-spore expression vector, DNA, and RNA. The VLP-based vaccine platform is a safe, highly immunogenic, and flexible platform for developing vaccines. This review focuses on VLP-based vaccine platforms and explicitly discusses the six VLP-based COVID-19 vaccines in clinical trial phases.

5.
Iran J Basic Med Sci ; 25(4): 506-513, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35656067

RESUMEN

Objectives: Metformin (Met) and liraglutide (Lira) have been approved to treat type 2 diabetes mellitus and have cardioprotective effects. Materials and Methods: Human umbilical vein endothelial cells (HUVECs) were incubated with Met, Lira, or their combination in this study. Results: Results showed that the synergistic inhibitory effect of the two drugs on HUVECs proliferation was significant (75%) after 48 hr drug exposure. In addition, either Lira or Met alone had a marked tendency to inhibit the migration of HUVECs (42% and 39%). Almost a complete inhibition (97%) was demonstrated in combinational use after 48 hr treatment. After combining these two drugs, the apoptosis rate raised to 68%, which was a significant approval of synergistic apoptosis induction of Met and Lira. The combinational group indicated a substantial increase in VEGF, PDGF, and MMP-9 at 24 hr compared with the control. Conclusion: This study showed that combination therapy with Lira and Met could effectively reduce cell proliferation, induce apoptosis, and inhibit cell migration in the HUVECs. This study provides evidence to support using Met in combination with Lira as a treatment option for patients with type-2 diabetes and cancer.

6.
Comput Biol Med ; 146: 105426, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35569336

RESUMEN

One of the most critical challenges in managing complex diseases like COVID-19 is to establish an intelligent triage system that can optimize the clinical decision-making at the time of a global pandemic. The clinical presentation and patients' characteristics are usually utilized to identify those patients who need more critical care. However, the clinical evidence shows an unmet need to determine more accurate and optimal clinical biomarkers to triage patients under a condition like the COVID-19 crisis. Here we have presented a machine learning approach to find a group of clinical indicators from the blood tests of a set of COVID-19 patients that are predictive of poor prognosis and morbidity. Our approach consists of two interconnected schemes: Feature Selection and Prognosis Classification. The former is based on different Matrix Factorization (MF)-based methods, and the latter is performed using Random Forest algorithm. Our model reveals that Arterial Blood Gas (ABG) O2 Saturation and C-Reactive Protein (CRP) are the most important clinical biomarkers determining the poor prognosis in these patients. Our approach paves the path of building quantitative and optimized clinical management systems for COVID-19 and similar diseases.


Asunto(s)
COVID-19 , Biomarcadores , Humanos , Aprendizaje Automático , Pandemias , Triaje/métodos
7.
Biol Trace Elem Res ; 173(2): 443-51, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27025719

RESUMEN

Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 µM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.


Asunto(s)
Región CA1 Hipocampal/enzimología , Cloruros/toxicidad , Colina O-Acetiltransferasa/biosíntesis , Inhibidores Enzimáticos/farmacología , Iminas/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Memoria Espacial/efectos de los fármacos , Compuestos de Zinc/toxicidad , Animales , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratas , Ratas Wistar
8.
Biologicals ; 43(2): 130-5, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25481729

RESUMEN

The Chinese hamster ovary (CHO) cell line is one of the predominant hosts used in the bioproduction of pharmaceutical proteins. There have been many concerns about the use of animal cell lines in biopharm industries, and one of the most important concerns has been residual host-cell DNA. Improper integration of residual DNA into the recipient genomes could activate oncogenes or deactivate tumor suppressor genes. Real-time polymerase chain reaction (PCR) is a routine assay method used in the quantification of DNA. In this study, genomic CHO DNA was purified and subjected to real-time PCR. The efficiency of the reaction was calculated, and the limit of detection (LOD) was determined. The calculated efficiency for the primers using the SYBR Green method was 94.3% (r(2) = 0.998). A melting curve analysis showed neither unspecific products nor primer dimers. The calculated efficiency for the TaqMan assay was 96.6% (r(2) = 1). The results showed that the LOD of the SYBR Green and TaqMan assays were 100 fg and 10 fg, respectively. Since the LOD of the TaqMan assay showed a better sensitivity than the SYBR Green, this method could be used directly on the final products for the quantification of residual DNA, without prior DNA extraction.


Asunto(s)
ADN/análisis , Compuestos Orgánicos/química , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Benzotiazoles , Células CHO , Cricetinae , Cricetulus , Diaminas , Quinolinas , Sensibilidad y Especificidad
9.
Gastroenterol Res Pract ; 2014: 185035, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24527027

RESUMEN

To find genes involved in tumorigenesis and the development of esophageal cancer, the suppression subtractive hybridization (SSH) method was used to identify genes that are overexpressed in esophageal cancer tissues compared to normal esophageal tissues. In our SSH library, the forkhead box O3 (FOXO3), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and myeloid differentiation primary response 88 (MYD88) genes were the most highly upregulated genes, and they were selected for further studies because of their potential role in the induction of autophagy. Upregulation of these genes was also observed in clinical samples using qRT-PCR. In addition, coexpression analysis of the autophagy-related genes Beclin1, ATG12, Gabarapl, PIK3C3, and LC3 demonstrated a significant correlation between the differentially overexpressed genes and autophagy. Autophagy is an important mechanism in tumorigenesis and the development of chemoresistance in cancer cells. The upregulation of FOXO3, GAPDH, and MYD88 variants in esophageal cancer suggests a role for autophagy and provides new insight into the biology of esophageal cancer. We propose that FOXO3, GAPDH, and MYD88 are novel targets for combating autophagy in esophageal cancer.

10.
Daru ; 22(1): 14, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24401285

RESUMEN

BACKGROUND: In cancer cells, apoptosis is an important mechanism that influences the outcome of chemotherapy and the development of chemoresistance. To find the genes involved in chemoresistance and the development of gastric cancer, we used the suppression subtractive hybridization method to identify the genes that are overexpressed in gastric cancer tissues compared to normal gastric tissues. RESULTS: In the suppression subtractive hybridization library we constructed, the most highly overexpressed genes were humanin isoforms. Humanin is a recently identified endogenous peptide that has anti-apoptotic activity and has been selected for further study due to its potential role in the chemoresistance of gastric cancer. Upregulation of humanin isoforms was also observed in clinical samples by using quantitative real-time PCR. Among the studied isoforms, humanin isoform 3, with an expression level of 4.166 ± 1.44 fold, was the most overexpressed isoform in GC. CONCLUSIONS: The overexpression of humanin in gastric cancer suggests a role for chemoresistance and provides new insight into the biology of gastric cancer. We propose that humanin isoforms are novel targets for combating chemoresistance in gastric cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA