RESUMEN
In eukaryotic cells, molecular fate and cellular responses are shaped by multicomponent enzyme systems which reversibly attach ubiquitin and ubiquitin-like modifiers to target proteins. The extent of the ubiquitin proteasome system in Leishmania mexicana and its importance for parasite survival has recently been established through deletion mutagenesis and life-cycle phenotyping studies. The ubiquitin conjugating E2 enzyme UBC2, and the E2 enzyme variant UEV1, with which it forms a stable complex in vitro, were shown to be essential for the differentiation of promastigote parasites to the infectious amastigote form. To investigate further, we used immunoprecipitation of Myc-UBC2 or Myc-UEV1 to identify interacting proteins in L. mexicana promastigotes. The interactome of UBC2 comprises multiple ubiquitin-proteasome components including UEV1 and four RING E3 ligases, as well as potential substrates predicted to have roles in carbohydrate metabolism and intracellular trafficking. The smaller UEV1 interactome comprises six proteins, including UBC2 and shared components of the UBC2 interactome consistent with the presence of intracellular UBC2-UEV1 complexes. Recombinant RING1, RING2 and RING4 E3 ligases were shown to support ubiquitin transfer reactions involving the E1, UBA1a, and UBC2 to available substrate proteins or to unanchored ubiquitin chains. These studies define additional components of a UBC2-dependent ubiquitination pathway shown previously to be essential for promastigote to amastigote differentiation.
Asunto(s)
Leishmania mexicana , Proteínas Protozoarias , Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Leishmania mexicana/genética , Leishmania mexicana/enzimología , Leishmania mexicana/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , InmunoprecipitaciónRESUMEN
The drug discovery pipeline for leishmaniasis and trypanosomiasis has been filling with novel chemical entities with known mechanisms of action. González et al. and Braillard et al. report a cytochrome bc1 complex inhibitor as another promising preclinical candidate for visceral leishmaniasis (VL) and, in combination with benznidazole, for chronic Chagas' disease (CCD).
Asunto(s)
Enfermedad de Chagas , Leishmaniasis Visceral , Leishmaniasis , Trypanosoma cruzi , Tripanosomiasis , Humanos , Enfermedad de Chagas/tratamiento farmacológico , Leishmaniasis/tratamiento farmacológico , Leishmaniasis Visceral/tratamiento farmacológicoRESUMEN
Leishmania parasites undergo differentiation between various proliferating and non-dividing forms to adapt to changing host environments. The mechanisms that link environmental cues with the parasite's developmental changes remain elusive. Here, we report that Leishmania TORC1 is a key environmental sensor for parasite proliferation and differentiation in the sand fly-stage promastigotes and for replication of mammalian-stage amastigotes. We show that Leishmania RPTOR1, interacts with TOR1 and LST8, and identify new parasite-specific proteins that interact in this complex. We investigate TORC1 function by conditional deletion of RPTOR1, where under nutrient-rich conditions RPTOR1 depletion results in decreased protein synthesis and growth, G1 cell cycle arrest and premature differentiation from proliferative promastigotes to non-dividing mammalian-infective metacyclic forms. These parasites are unable to respond to nutrients to differentiate into proliferative retroleptomonads, which are required for their blood-meal induced amplification in sand flies and enhanced mammalian infectivity. We additionally show that RPTOR1-/- metacyclic promastigotes develop into amastigotes but do not proliferate in the mammalian host to cause pathology. RPTOR1-dependent TORC1 functionality represents a critical mechanism for driving parasite growth and proliferation.
Asunto(s)
Leishmania , Phlebotomus , Psychodidae , Animales , Psychodidae/parasitología , Phlebotomus/parasitología , Nutrientes , Proliferación Celular , MamíferosRESUMEN
Leishmaniases are a collection of neglected tropical diseases caused by kinetoplastid parasites in the genus Leishmania. Current chemotherapies are severely limited, and the need for new antileishmanials is of pressing international importance. Bromodomains are epigenetic reader domains that have shown promising therapeutic potential for cancer therapy and may also present an attractive target to treat parasitic diseases. Here, we investigate Leishmania donovani bromodomain factor 5 (LdBDF5) as a target for antileishmanial drug discovery. LdBDF5 contains a pair of bromodomains (BD5.1 and BD5.2) in an N-terminal tandem repeat. We purified recombinant bromodomains of L. donovani BDF5 and determined the structure of BD5.2 by X-ray crystallography. Using a histone peptide microarray and fluorescence polarization assay, we identified binding interactions of LdBDF5 bromodomains with acetylated peptides derived from histones H2B and H4. In orthogonal biophysical assays including thermal shift assays, fluorescence polarization, and NMR, we showed that BDF5 bromodomains bind to human bromodomain inhibitors SGC-CBP30, bromosporine, and I-BRD9; moreover, SGC-CBP30 exhibited activity against Leishmania promastigotes in cell viability assays. These findings exemplify the potential BDF5 holds as a possible drug target in Leishmania and provide a foundation for the future development of optimized antileishmanial compounds targeting this epigenetic reader protein.
Asunto(s)
Antiprotozoarios , Factor V , Humanos , Factor V/metabolismo , Histonas/química , Histonas/metabolismo , Dominios Proteicos , Antiprotozoarios/farmacología , Descubrimiento de Drogas , Factores de Transcripción/metabolismoRESUMEN
Selection and internalization of cargo via clathrin-mediated endocytosis requires adaptor protein complexes. One complex, AP-2, acts during cargo selection at the plasma membrane. African trypanosomes lack all components of the AP-2 complex, except for a recently identified orthologue of the AP-2-associated protein kinase 1, AAK1. In characterized eukaryotes, AAK1 phosphorylates the µ2 subunit of the AP-2 complex to enhance cargo recognition and uptake into clathrin-coated vesicles. Here, we show that kinetoplastids encode not one, but two AAK1 orthologues: one (AAK1L2) is absent from salivarian trypanosomes, while the other (AAK1L1) lacks important kinase-specific residues in a range of trypanosomes. These AAK1L1 and AAK1L2 novelties reinforce suggestions of functional divergence in endocytic uptake within salivarian trypanosomes. Despite this, we show that AAK1L1 null mutant Trypanosoma brucei, while viable, display slowed proliferation, morphological abnormalities including swelling of the flagellar pocket, and altered cargo uptake. In summary, our data suggest an unconventional role for a putative pseudokinase during endocytosis and/or vesicular trafficking in T. brucei, independent of AP-2.
Asunto(s)
Parásitos , Trypanosoma brucei brucei , Animales , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Clatrina/metabolismo , Parásitos/metabolismo , Endocitosis/fisiología , Membrana CelularRESUMEN
Millions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT. Cryo-electron microscopy approaches confirmed that CT compounds acted through selective, irreversible inhibition of trypanosomal topoisomerase II by stabilizing double-stranded DNA:enzyme cleavage complexes. These findings suggest a potential approach toward successful therapeutics for the treatment of Chagas disease.
Asunto(s)
Enfermedad de Chagas , Inhibidores de Topoisomerasa II , Triazoles , Trypanosoma , Tripanosomiasis Africana , Animales , Humanos , Ratones , Enfermedad de Chagas/tratamiento farmacológico , Microscopía por Crioelectrón , ADN-Topoisomerasas de Tipo II/metabolismo , Trypanosoma/efectos de los fármacos , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Triazoles/química , Triazoles/farmacología , Triazoles/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Evaluación Preclínica de MedicamentosRESUMEN
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
RESUMEN
Ubiquitination is a post-translational modification conserved across eukaryotic species. It contributes to a variety of regulatory pathways, including proteasomal degradation, DNA repair, and cellular differentiation. The ubiquitination of substrate proteins typically requires three ubiquitination enzymes: a ubiquitin-activating E1, a ubiquitin-conjugating E2, and an E3 ubiquitin ligase. Cooperation between E2s and E3s is required for substrate ubiquitination, but some ubiquitin-conjugating E2s are also able to catalyze by themselves the formation of free di-ubiquitin, independently or in cooperation with a ubiquitin E2 variant. Here, we describe a method for assessing (i) di-ubiquitin formation by an E1 together with an E2 and an E2 variant, and (ii) the cooperation of an E3 with an E1 and E2 (with or without the E2 variant). Reaction products are assessed using western blotting with one of two antibodies: the first detects all ubiquitin conjugates, while the second specifically recognizes K63-linked ubiquitin. This allows unambiguous identification of ubiquitinated species and assessment of whether K63 linkages are present. We have developed these methods for studying ubiquitination proteins of Leishmania mexicana , specifically the activities of the E2, UBC2, and the ubiquitin E2 variant UEV1, but we anticipate the assays to be applicable to other ubiquitination systems with UBC2/UEV1 orthologues.
RESUMEN
BACKGROUND: Miltefosine treatment failure in visceral leishmaniasis in Brazil has been associated with deletion of the miltefosine susceptibility locus (MSL) in Leishmania infantum. The MSL comprises four genes, 3'-nucleotidase/nucleases (NUC1 and NUC2); helicase-like protein (HLP); and 3,2-trans-enoyl-CoA isomerase (TEI). METHODS: In this study CRISPR-Cas9 was used to either epitope tag or delete NUC1, NUC2, HLP and TEI, to investigate their role in miltefosine resistance mechanisms. Additionally, miltefosine transporter genes and miltefosine-mediated reactive oxygen species homeostasis were assessed in 26 L. infantum clinical isolates. A comparative lipidomic analysis was also performed to investigate the molecular basis of miltefosine resistance. FINDINGS: Deletion of both NUC1, NUC2 from the MSL was associated with a significant decrease in miltefosine susceptibility, which was restored after re-expression. Metabolomic analysis of parasites lacking the MSL or NUC1 and NUC2 identified an increase in the parasite lipid content, including ergosterol; these lipids may contribute to miltefosine resistance by binding the drug in the membrane. Parasites lacking the MSL are more resistant to lipid metabolism perturbation caused by miltefosine and NUC1 and NUC2 are involved in this pathway. Additionally, L. infantum parasites lacking the MSL isolated from patients who relapsed after miltefosine treatment were found to modulate nitric oxide accumulation in host macrophages. INTERPRETATION: Altogether, these data indicate that multifactorial mechanisms are involved in natural resistance to miltefosine in L. infantum and that the absence of the 3'nucleotidase/nuclease genes NUC1 and NUC2 contributes to the phenotype. FUNDING: MRC GCRF and FAPES.
Asunto(s)
Antiprotozoarios , Leishmania infantum , Leishmania infantum/genética , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Fosforilcolina/farmacología , Fosforilcolina/uso terapéutico , Nucleotidasas/metabolismoRESUMEN
Kinetochores in the parasite Leishmania and related kinetoplastids appear to be unique amongst eukaryotes and contain protein kinases as core components. Using the kinetochore kinases KKT2, KKT3 and CLK2 as baits, we developed a BirA* proximity biotinylation methodology optimised for sensitivity, XL-BioID, to investigate the composition and function of the Leishmania kinetochore. We could detect many of the predicted components and also discovered two novel kinetochore proteins, KKT24 and KKT26. Using KKT3 tagged with a fast-acting promiscuous biotin ligase variant, we took proximity biotinylation snapshots of the kinetochore in synchronised parasites. To quantify proximal phosphosites at the kinetochore as the parasite progressed through the cell cycle, we further developed a spatially referenced proximity phosphoproteomics approach. This revealed a group of phosphosites at the kinetochore that were highly dynamic during kinetochore assembly. We show that the kinase inhibitor AB1 targets CLK1/CLK2 (KKT10/KKT19) in Leishmania leading to defective cytokinesis. Using AB1 to uncover CLK1/CLK2 driven signalling pathways important for kinetochore function at G2/M, we found a set of 16 inhibitor responsive kinetochore-proximal phosphosites. Our results exploit new proximity labelling approaches to provide a direct analysis of the Leishmania kinetochore, which is emerging as a promising drug target.
Asunto(s)
Cinetocoros , Leishmania , Biotinilación , Inhibidores de Proteínas QuinasasRESUMEN
Visceral leishmaniasis (VL) is a potentially fatal disease caused mainly by Leishmania infantum in South America and Leishmania donovani in Asia and Africa. Disease outcomes have been associated with patient genotype, nutrition, age, sex, comorbidities, and coinfections. In this study, we examine the effects of parasite genetic variation on VL disease severity in Brazil. We collected and sequenced the genomes of 109 L. infantum isolates from patients in northeastern Brazil and retrieved matching patient clinical data from medical records, including mortality, sex, HIV coinfection, and laboratory data (creatinine, hemoglobin, and leukocyte and platelet counts). We identified genetic differences between parasite isolates, including single nucleotide polymorphisms (SNPs), small insertions/deletions (indels), and variations in genic, intergenic, and chromosome copy numbers (copy number variants [CNVs]). To describe associations between the parasite genotypes and clinical outcomes, we applied quantitative genetics methods of heritability and genome-wide association studies (GWAS), treating clinical outcomes as traits that may be influenced by parasite genotype. Multiple aspects of the genetic analysis indicate that parasite genotype affects clinical outcomes. We estimate that parasite genotype explains 83% chance of mortality (narrow-sense heritability [h2] = 0.83 ± 0.17) and has a significant relationship with patient sex (h2 = 0.60 ± 0.27). Impacts of parasite genotype on other clinical traits are lower (h2 ≤ 0.34). GWAS analysis identified multiple parasite genetic loci that were significantly associated with clinical outcomes; 17 CNVs were significantly associated with mortality, two with creatinine, and one with bacterial coinfection, jaundice, and HIV coinfection, and two SNPs/indels and six CNVs were associated with age, jaundice, HIV and bacterial coinfections, creatinine, and/or bleeding sites. Parasite genotype is an important factor in VL disease severity in Brazil. Our analysis indicates that specific genetic differences between parasites act as virulence factors, enhancing risks of severe disease and mortality. More detailed understanding of these virulence factors could be exploited for novel therapies. IMPORTANCE Multiple factors contribute to the risk of mortality from visceral leishmaniasis (VL), including, patient genotype, comorbidities, and nutrition. Many of these factors are influenced by socioeconomic biases. Our work suggests that the virulence of the infecting parasite is an important risk factor for mortality. We pinpoint some specific genomic markers that are associated with mortality, which can lead to a greater understanding of the molecular mechanisms that cause severe VL disease, to the identification of genetic markers for virulent parasites, and to the development of drug and vaccine therapies.
Asunto(s)
Coinfección , Infecciones por VIH , Leishmania infantum , Leishmaniasis Visceral , Parásitos , Animales , Humanos , Leishmaniasis Visceral/parasitología , Parásitos/genética , Creatinina/farmacología , Creatinina/uso terapéutico , Estudio de Asociación del Genoma Completo , Genotipo , Factores de Virulencia , Brasil , Leishmania infantum/genéticaRESUMEN
In eukaryotic cells, reversible attachment of ubiquitin and ubiquitin-like modifiers (Ubls) to specific target proteins is conducted by multicomponent systems whose collective actions control protein fate and cell behaviour in precise but complex ways. In trypanosomatids, attachment of ubiquitin and Ubls to target proteins regulates the cell cycle, endocytosis, protein sorting and degradation, autophagy and various aspects of infection and stress responses. The extent of these systems in trypanosomatids has been surveyed in recent reports, while in Leishmania mexicana, essential roles have been defined for many ubiquitin-system genes in deletion mutagenesis and life-cycle phenotyping campaigns. The first steps to elucidate the pathways of ubiquitin transfer among the ubiquitination components and to define the acceptor substrates and the downstream deubiquitinases are now being taken.
Asunto(s)
Proteínas , Ubiquitina , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación , Células Eucariotas , AutofagiaRESUMEN
Trypanosomatid parasitic protozoa are divergent from opisthokont models and have evolved unique mechanisms to regulate their complex life cycles and to adapt to a range of hosts. Understanding how these organisms respond, adapt, and persist in their different hosts could reveal optimal drug-control strategies. Protein kinases are fundamental to many biological processes such as cell cycle control, adaptation to stress, and cellular differentiation. Therefore, we have focused this review on the features and functions of protein kinases that distinguish trypanosomatid kinomes from other eukaryotes. We describe the latest research, highlighting similarities and differences between two groups of trypanosomatid parasites, Leishmania and African trypanosomes.
Asunto(s)
Leishmania , Trypanosoma , Animales , Leishmania/metabolismo , Estadios del Ciclo de Vida , Proteínas Quinasas/metabolismo , Trypanosoma/metabolismoRESUMEN
The protozoan parasite Leishmania (L.) amazonensis infects and replicates inside host macrophages due to subversion of the innate host cell response. In the present study, we demonstrate that TLR3 is required for the intracellular growth of L. (L.) amazonensis. We observed restricted intracellular infection of TLR3-/- mouse macrophages, reduced levels of IFN1ß and IL-10, and increased levels of IL-12 upon L. (L.) amazonensis infection, compared with their wild-type counterparts. Accordingly, in vivo infection of TLR3-/- mice with L. (L.) amazonensis displayed a significant reduction in lesion size. Leishmania (L.) amazonensis infection induced TLR3 proteolytic cleavage, which is a process required for TLR3 signaling. The chemical inhibition of TLR3 cleavage or infection by CPB-deficient mutant L. (L.) mexicana resulted in reduced parasite load and restricted the expression of IFN1ß and IL-10. Furthermore, we show that the dsRNA sensor molecule PKR (dsRNA-activated protein kinase) cooperates with TLR3 signaling to potentiate the expression of IL-10 and IFN1ß and parasite survival. Altogether, our results show that TLR3 signaling is engaged during L. (L.) amazonensis infection and this component of innate immunity modulates the host cell response.
Asunto(s)
Leishmania mexicana , Leishmaniasis , Parásitos , Receptor Toll-Like 3 , Animales , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Leishmania mexicana/metabolismo , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Ratones , Parásitos/metabolismo , Proteínas Quinasas/metabolismo , Receptor Toll-Like 3/metabolismoRESUMEN
Leishmania are unicellular parasites that cause human and animal diseases. Like other kinetoplastids, they possess large transcriptional start regions (TSRs) which are defined by histone variants and histone lysine acetylation. Cellular interpretation of these chromatin marks is not well understood. Eight bromodomain factors, the reader modules for acetyl-lysine, are found across Leishmania genomes. Using L. mexicana, Cas9-driven gene deletions indicate that BDF1-5 are essential for promastigotes. Dimerisable, split Cre recombinase (DiCre)-inducible gene deletion of BDF5 show it is essential for both promastigotes and murine infection. ChIP-seq identifies BDF5 as enriched at TSRs. XL-BioID proximity proteomics shows the BDF5 landscape is enriched for BDFs, HAT2, proteins involved in transcriptional activity, and RNA processing; revealing a Conserved Regulators of Kinetoplastid Transcription (CRKT) Complex. Inducible deletion of BDF5 causes global reduction in RNA polymerase II transcription. Our results indicate the requirement of Leishmania to interpret histone acetylation marks through the bromodomain-enriched CRKT complex for normal gene expression and cellular viability.
Asunto(s)
Leishmania , Acetilación , Animales , Factor V/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Leishmania/genética , Leishmania/metabolismo , Lisina/metabolismo , RatonesRESUMEN
Proximity labelling is a powerful and rapidly developing technology for exploring the interaction space and molecular environment of a protein of interest at the nanometre scale. In proximity labelling, a promiscuous biotinylating enzyme is genetically fused to the protein of interest, initiation of labelling then results in the biotinylating enzyme generating reactive biotin which covalently 'tags' nearby molecules. Importantly, this labelling takes place in vivo whilst the protein of interest continues to perform its normal functions in the cell. Due to its unique advantageous characteristics, proximity labelling is driving discoveries in an ever increasing range of organisms. Here, we highlight the applications of proximity labelling to the study of kinetoplastids, a group of eukaryotic protozoa that includes trypanosomes and Leishmania which can cause serious disease in humans and livestock. We first provide a general overview of the proximity labelling experimental workflow including key labelling enzymes used, proper experimental design with appropriate controls and robust statistical analysis to maximise the amount of reliable spatial information that is generated. We discuss studies employing proximity labelling in kinetoplastid parasites to illustrate how these key principles of experimental design are applied. Finally, we highlight emerging trends in the development of proximity labelling methodology.
Asunto(s)
Kinetoplastida , Parásitos , Animales , Biotina/metabolismo , Biotinilación , Humanos , Kinetoplastida/metabolismo , Parásitos/metabolismoRESUMEN
Visceral leishmaniasis is associated with hepato-splenomegaly and altered immune and hematological parameters in both preclinical animal models and humans. We studied mouse experimental visceral leishmaniasis caused by Leishmania infantum and Leishmania donovani in BALB/c mice using dual RNA-seq to investigate the transcriptional response of host and parasite in liver and spleen. We identified only 4 species-specific parasite expressed genes (SSPEGs; log2FC >1, FDR <0.05) in the infected spleen, and none in the infected liver. For the host transcriptome, we found 789 differentially expressed genes (DEGs; log2FC >1, FDR <0.05) in the spleen that were common to both infections, with IFNγ signaling and complement and coagulation cascade pathways highly enriched, and an additional 286 and 186 DEGs that were selective to L. donovani and L. infantum infection, respectively. Among those, there were network interactions between genes of amino acid metabolism and PPAR signaling in L. donovani infection and increased IL1ß and positive regulation of fatty acid transport in L. infantum infection, although no pathway enrichment was observed. In the liver, there were 1,939 DEGs in mice infected with either L. infantum or L. donovani in comparison to uninfected mice, and the most enriched pathways were IFNγ signaling, neutrophil mediated immunity, complement and coagulation, cytokine-chemokine responses, and hemostasis. Additionally, 221 DEGs were selective in L. donovani and 429 DEGs in L. infantum infections. These data show that the host response for these two visceral leishmaniasis infection models is broadly similar, and â¼10% of host DEGs vary in infections with either parasite species. IMPORTANCE Visceral leishmaniasis (VL) is caused by two species of Leishmania parasites, L. donovani in the Old World and L. infantum in the New World and countries bordering the Mediterranean. Although cardinal features such as hepato-splenomegaly and alterations in blood and immune function are evident, clinical presentation may vary by geography, with for example severe bleeding often associated with VL in Brazil. Although animal models of both L. donovani and L. infantum have been widely used to study disease pathogenesis, a direct side-by-side comparison of how these parasites species impact the infected host and/or how they might respond to the stresses of mammalian infection has not been previously reported. Identifying common and distinct pathways to pathogenesis will be important to ensure that new therapeutic or prophylactic approaches will be applicable across all forms of VL.
Asunto(s)
Leishmania donovani , Leishmania infantum , Leishmaniasis Visceral , Parásitos , Animales , Leishmania donovani/genética , Leishmania infantum/genética , Leishmaniasis Visceral/parasitología , Mamíferos/genética , Ratones , Ratones Endogámicos BALB C , Parásitos/genética , RNA-Seq , EsplenomegaliaRESUMEN
Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, provoking liver and spleen tissue destruction that is lethal unless treated. The parasite replicates in macrophages and modulates host microbicidal responses. We have previously reported that neutrophil elastase (NE) is required to sustain L. donovani intracellular growth in macrophages through the induction of interferon beta (IFN-ß). Here, we show that the gene expression of IFN-ß by infected macrophages was reduced by half when TLR4 was blocked by pre-treatment with neutralizing antibodies or in macrophages from tlr2-/- mice, while the levels in macrophages from myd88-/- mice were comparable to those from wild-type C57BL/6 mice. The neutralization of TLR4 in tlr2-/- macrophages completely abolished induction of IFN-ß gene expression upon parasite infection, indicating an additive role for both TLRs. Induction of type I interferon (IFN-I), OASL2, SOD1, and IL10 gene expression by L. donovani was completely abolished in macrophages from NE knock-out mice (ela2-/-) or from protein kinase R (PKR) knock-out mice (pkr-/-), and in C57BL/6 macrophages infected with transgenic L. donovani expressing the inhibitor of serine peptidase 2 (ISP2). Parasite intracellular growth was impaired in pkr-/- macrophages but was fully restored by the addition of exogenous IFN-ß, and parasite burdens were reduced in the spleen of pkr-/- mice at 7 days, as compared to the 129Sv/Ev background mice. Furthermore, parasites were unable to grow in macrophages lacking TLR3, which correlated with lack of IFN-I gene expression. Thus, L. donovani engages innate responses in infected macrophages via TLR2, TLR4, and TLR3, via downstream PKR, to induce the expression of pro-survival genes in the host cell, and guarantee parasite intracellular development.
Asunto(s)
Interferón-alfa/metabolismo , Interferón beta/metabolismo , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Macrófagos Peritoneales/inmunología , Transducción de Señal/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Femenino , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Técnicas de Inactivación de Genes , Interferón-alfa/genética , Interferón beta/genética , Leishmaniasis Visceral/parasitología , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/genética , Elastasa de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Sulfonamidas/farmacología , Receptor Toll-Like 2/genética , Receptor Toll-Like 3/genética , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/inmunología , eIF-2 Quinasa/genéticaRESUMEN
The protozoan Trypanosoma brucei rhodesiense causes Human African Trypanosomiasis, also known as sleeping sickness, and penetrates the central nervous system, leading to meningoencephalitis. The Cathepsin L-like cysteine peptidase of T. b. rhodesiense has been implicated in parasite penetration of the blood-brain barrier and its activity is modulated by the chagasin-family endogenous inhibitor of cysteine peptidases (ICP). To investigate the role of ICP in T. b. rhodesiense bloodstream form, ICP-null (Δicp) mutants were generated, and lines re-expressing ICP (Δicp:ICP). Lysates of Δicp displayed increased E-64-sensitive cysteine peptidase activity and the mutant parasites traversed human brain microvascular endothelial cell (HBMEC) monolayers in vitro more efficiently. Δicp induced E-selectin in HBMECs, leading to the adherence of higher numbers of human neutrophils. In C57BL/6 mice, no Δicp parasites could be detected in the blood after 6 days, while mice infected with wild-type (WT) or Δicp:ICP displayed high parasitemia, peaking at day 12. In mice infected with Δicp, there was increased recruitment of monocytes to the site of inoculation and higher levels of IFN-γ in the spleen. At day 14, mice infected with Δicp exhibited higher preservation of the CD4+, CD8+, and CD19+ populations in the spleen, accompanied by sustained high IFN-γ, while NK1.1+ populations receded nearly to the levels of uninfected controls. We propose that ICP helps to downregulate inflammatory responses that contribute to the control of infection.
Asunto(s)
Proteínas Protozoarias , Trypanosoma brucei rhodesiense , Tripanosomiasis Africana , Animales , Ratones , Ratones Endogámicos C57BL , Trypanosoma brucei rhodesiense/patogenicidad , Tripanosomiasis Africana/parasitología , Virulencia , Proteínas Protozoarias/metabolismoRESUMEN
The Leishmania donovani species complex is the causative agent of visceral leishmaniasis, which cause 20-40,000 fatalities a year. Here, we conduct a screen for balancing selection in this species complex. We used 384 publicly available L. donovani and L. infantum genomes, and sequence 93 isolates of L. infantum from Brazil to describe the global diversity of this species complex. We identify five genetically distinct populations that are sufficiently represented by genomic data to search for signatures of selection. We find that signals of balancing selection are generally not shared between populations, consistent with transient adaptive events, rather than long-term balancing selection. We then apply multiple diversity metrics to identify candidate genes with robust signatures of balancing selection, identifying a curated set of 24 genes with robust signatures. These include zeta toxin, nodulin-like, and flagellum attachment proteins. This study highlights the extent of genetic divergence between L. donovani complex parasites and provides genes for further study.