Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cancer Imaging ; 24(1): 67, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802883

RESUMEN

INTRODUCTION: With the application of high-resolution 3D 7 Tesla Magnetic Resonance Spectroscopy Imaging (MRSI) in high-grade gliomas, we previously identified intratumoral metabolic heterogeneities. In this study, we evaluated the potential of 3D 7 T-MRSI for the preoperative noninvasive classification of glioma grade and isocitrate dehydrogenase (IDH) status. We demonstrated that IDH mutation and glioma grade are detectable by ultra-high field (UHF) MRI. This technique might potentially optimize the perioperative management of glioma patients. METHODS: We prospectively included 36 patients with WHO 2021 grade 2-4 gliomas (20 IDH mutated, 16 IDH wildtype). Our 7 T 3D MRSI sequence provided high-resolution metabolic maps (e.g., choline, creatine, glutamine, and glycine) of these patients' brains. We employed multivariate random forest and support vector machine models to voxels within a tumor segmentation, for classification of glioma grade and IDH mutation status. RESULTS: Random forest analysis yielded an area under the curve (AUC) of 0.86 for multivariate IDH classification based on metabolic ratios. We distinguished high- and low-grade tumors by total choline (tCho) / total N-acetyl-aspartate (tNAA) ratio difference, yielding an AUC of 0.99. Tumor categorization based on other measured metabolic ratios provided comparable accuracy. CONCLUSIONS: We successfully classified IDH mutation status and high- versus low-grade gliomas preoperatively based on 7 T MRSI and clinical tumor segmentation. With this approach, we demonstrated imaging based tumor marker predictions at least as accurate as comparable studies, highlighting the potential application of MRSI for pre-operative tumor classifications.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Espectroscopía de Resonancia Magnética , Mutación , Clasificación del Tumor , Humanos , Glioma/genética , Glioma/diagnóstico por imagen , Glioma/patología , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Femenino , Masculino , Persona de Mediana Edad , Adulto , Espectroscopía de Resonancia Magnética/métodos , Estudios Prospectivos , Anciano , Imagen por Resonancia Magnética/métodos , Colina/metabolismo , Colina/análisis
2.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38645249

RESUMEN

Purpose: 1.1 Proton ( 1 H)-MRSI via spatial-spectral encoding poses high demands on gradient hardware at ultra-high fields and high-resolutions. Rosette trajectories help alleviate these problems, but at reduced SNR-efficiency due to their k-space densities not matching any desired k-space filter. We propose modified rosette trajectories, which more closely match a Hamming filter, and thereby improve SNR performance while still staying within gradient hardware limitations and without prolonging scan time. Methods: 1.2Analytical and synthetic simulations were validated with phantom and in vivo measurements at 7 T. The rosette and modified rosette trajectories were measured in five healthy volunteers in six minutes in a 2D slice in the brain. A 3D sequence was measured in one volunteer within 19 minutes. The SNR, linewidth, CRLBs, lipid contamination and data quality of the proposed modified rosette trajectory were compared to the rosette trajectory. Results: 1.3Using the modified rosette trajectories, an improved k-space weighting function was achieved resulting in an increase of up to 12% in SNR compared to rosette's dependent on the two additional trajectory parameters. Similar results were achieved for the theoretical SNR calculation based on k-space densities, as well as when using the pseudo-replica method for simulated, in-vivo and phantom data. The CRLBs improved slightly, but non-significantly for the modified rosette trajectories, while the linewidths and lipid contamination remained similar. Conclusion: 1.4By improving the rosette trajectory's shape, modified rosette trajectories achieved higher SNR at the same scan time and data quality.

3.
Hum Brain Mapp ; 45(6): e26686, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647048

RESUMEN

Deuterium metabolic imaging (DMI) is an emerging magnetic resonance technique, for non-invasive mapping of human brain glucose metabolism following oral or intravenous administration of deuterium-labeled glucose. Regional differences in glucose metabolism can be observed in various brain pathologies, such as Alzheimer's disease, cancer, epilepsy or schizophrenia, but the achievable spatial resolution of conventional phase-encoded DMI methods is limited due to prolonged acquisition times rendering submilliliter isotropic spatial resolution for dynamic whole brain DMI not feasible. The purpose of this study was to implement non-Cartesian spatial-spectral sampling schemes for whole-brain 2H FID-MR Spectroscopic Imaging to assess time-resolved metabolic maps with sufficient spatial resolution to reliably detect metabolic differences between healthy gray and white matter regions. Results were compared with lower-resolution DMI maps, conventionally acquired within the same session. Six healthy volunteers (4 m/2 f) were scanned for ~90 min after administration of 0.8 g/kg oral [6,6']-2H glucose. Time-resolved whole brain 2H FID-DMI maps of glucose (Glc) and glutamate + glutamine (Glx) were acquired with 0.75 and 2 mL isotropic spatial resolution using density-weighted concentric ring trajectory (CRT) and conventional phase encoding (PE) readout, respectively, at 7 T. To minimize the effect of decreased signal-to-noise ratios associated with smaller voxels, low-rank denoising of the spatiotemporal data was performed during reconstruction. Sixty-three minutes after oral tracer uptake three-dimensional (3D) CRT-DMI maps featured 19% higher (p = .006) deuterium-labeled Glc concentrations in GM (1.98 ± 0.43 mM) compared with WM (1.66 ± 0.36 mM) dominated regions, across all volunteers. Similarly, 48% higher (p = .01) 2H-Glx concentrations were observed in GM (2.21 ± 0.44 mM) compared with WM (1.49 ± 0.20 mM). Low-resolution PE-DMI maps acquired 70 min after tracer uptake featured smaller regional differences between GM- and WM-dominated areas for 2H-Glc concentrations with 2.00 ± 0.35 mM and 1.71 ± 0.31 mM, respectively (+16%; p = .045), while no regional differences were observed for 2H-Glx concentrations. In this study, we successfully implemented 3D FID-MRSI with fast CRT encoding for dynamic whole-brain DMI at 7 T with 2.5-fold increased spatial resolution compared with conventional whole-brain phase encoded (PE) DMI to visualize regional metabolic differences. The faster metabolic activity represented by 48% higher Glx concentrations was observed in GM- compared with WM-dominated regions, which could not be reproduced using whole-brain DMI with the low spatial resolution protocol. Improved assessment of regional pathologic alterations using a fully non-invasive imaging method is of high clinical relevance and could push DMI one step toward clinical applications.


Asunto(s)
Encéfalo , Deuterio , Glucosa , Humanos , Glucosa/metabolismo , Adulto , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Adulto Joven , Espectroscopía de Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo
4.
Magn Reson Med ; 91(5): 2044-2056, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38193276

RESUMEN

PURPOSE: Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0 ), which is a prerequisite for high quality data. Thus, characterization of changes to B0 , for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. METHODS: We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real-time correction. A 3D U-net was trained on in vivo gradient-echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid-body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine-trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U-net with these data. RESULTS: Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator-equivalent method and proposed method. CONCLUSION: It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Movimiento (Física) , Movimiento , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos
5.
Neuroimage Clin ; 40: 103524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37839194

RESUMEN

OBJECTIVE: To investigate the metabolic pattern of different types of iron accumulation in multiple sclerosis (MS) lesions, and compare metabolic alterations within and at the periphery of lesions and newly emerging lesions in vivo according to iron deposition. METHODS: 7 T MR spectroscopic imaging and susceptibility-weighted imaging was performed in 31 patients with relapsing-remitting MS (16 female/15 male; mean age, 36.9 ± 10.3 years). Mean metabolic ratios of four neuro-metabolites were calculated for regions of interest (ROI) of normal appearing white matter (NAWM), "non-iron" (lesion without iron accumulation on SWI), and three distinct types of iron-laden lesions ("rim": distinct rim-shaped iron accumulation; "area": iron deposition across the entire lesions; "transition": transition between "area" and "rim" accumulation shape), and for lesion layers of "non-iron" and "rim" lesions. Furthermore, newly emerging "non-iron" and "iron" lesions were compared longitudinally, as measured before their appearance and one year later. RESULTS: Thirty-nine of 75 iron-containing lesions showed no distinct paramagnetic rim. Of these, "area" lesions exhibited a 65% higher mIns/tNAA (p = 0.035) than "rim" lesions. Comparing lesion layers of both "non-iron" and "rim" lesions, a steeper metabolic gradient of mIns/tNAA ("non-iron" +15%, "rim" +40%) and tNAA/tCr ("non-iron" -15%, "rim" -35%) was found in "iron" lesions, with the lesion core showing +22% higher mIns/tNAA (p = 0.005) and -23% lower tNAA/tCr (p = 0.048) in "iron" compared to "non-iron" lesions. In newly emerging lesions, 18 of 39 showed iron accumulation, with the drop in tNAA/tCr after lesion formation remaining significantly lower compared to pre-lesional tissue over time in "iron" lesions (year 0: p = 0.013, year 1: p = 0.041) as opposed to "non-iron" lesions (year 0: p = 0.022, year 1: p = 0.231). CONCLUSION: 7 T MRSI allows in vivo characterization of different iron accumulation types each presenting with a distinct metabolic profile. Furthermore, the larger extent of neuronal damage in lesions with a distinct iron rim was reconfirmed via reduced tNAA/tCr concentrations, but with metabolic differences in lesion development between (non)-iron-containing lesions. This highlights the ability of MRSI to further investigate different types of iron accumulation and suggests possible implications for disease monitoring.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple/patología , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Hierro/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
6.
Neuroimage ; 277: 120250, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37414233

RESUMEN

INTRODUCTION: Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'-2H2]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2H MRSI (DMI) and 1H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate+glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. METHODS: Five volunteers (4 m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8 g/kg oral [6,6'-2H2]-glucose administration using time-resolved 3D 2H FID-MRSI with elliptical phase encoding at 7T and 3D 1H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. RESULTS: One hour after oral tracer administration regionally averaged deuterium labeled Glx4 concentrations and the dynamics were not significantly different over all participants between 7T 2H DMI and 3T 1H QELT data for GM (1.29±0.15 vs. 1.38±0.26 mM, p=0.65 & 21±3 vs. 26±3 µM/min, p=0.22) and WM (1.10±0.13 vs. 0.91±0.24 mM, p=0.34 & 19±2 vs. 17±3 µM/min, p=0.48). Also, the observed time constants of dynamic Glc6 data in GM (24±14 vs. 19±7 min, p=0.65) and WM (28±19 vs. 18±9 min, p=0.43) dominated regions showed no significant differences. Between individual 2H and 1H data points a weak to moderate negative correlation was observed for Glx4 concentrations in GM (r=-0.52, p<0.001), and WM (r=-0.3, p<0.001) dominated regions, while a strong negative correlation was observed for Glc6 data GM (r=-0.61, p<0.001) and WM (r=-0.70, p<0.001). CONCLUSION: This study demonstrates that indirect detection of deuterium labeled compounds using 1H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Deuterio/metabolismo , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Glucosa/metabolismo
7.
medRxiv ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131634

RESUMEN

Introduction: Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'- 2 H 2 ]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2 H MRSI (DMI) and 1 H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate+glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. Methods: Five volunteers (4m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8g/kg oral [6,6'- 2 H 2 ]-glucose administration using time-resolved 3D 2 H FID-MRSI with elliptical phase encoding at 7T and 3D 1 H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. Results: One hour after oral tracer administration regionally averaged deuterium labeled Glx 4 concentrations and the dynamics were not significantly different over all participants between 7T 2 H DMI and 3T 1 H QELT data for GM (1.29±0.15 vs. 1.38±0.26 mM, p=0.65 & 21±3 vs. 26±3 µM/min, p=0.22) and WM (1.10±0.13 vs. 0.91±0.24 mM, p=0.34 & 19±2 vs. 17±3 µM/min, p=0.48). Also, the observed time constants of dynamic Glc 6 data in GM (24±14 vs. 19±7 min, p=0.65) and WM (28±19 vs. 18±9 min, p=0.43) dominated regions showed no significant differences. Between individual 2 H and 1 H data points a weak to moderate negative correlation was observed for Glx 4 concentrations in GM (r=-0.52, p<0.001), and WM (r=-0.3, p<0.001) dominated regions, while a strong negative correlation was observed for Glc 6 data GM (r=- 0.61, p<0.001) and WM (r=-0.70, p<0.001). Conclusion: This study demonstrates that indirect detection of deuterium labeled compounds using 1 H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2 H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.

8.
Invest Radiol ; 58(2): 156-165, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094811

RESUMEN

BACKGROUND: Magnetic resonance spectroscopic imaging (MRSI) of the brain enables in vivo assessment of metabolic alterations in multiple sclerosis (MS). This provides complementary insights into lesion pathology that cannot be obtained via T1- and T2-weighted conventional magnetic resonance imaging (cMRI). PURPOSE: The aims of this study were to assess focal metabolic alterations inside and at the periphery of lesions that are visible or invisible on cMRI, and to correlate their metabolic changes with T1 hypointensity and the distance of lesions to cortical gray matter (GM). METHODS: A 7 T MRSI was performed on 51 patients with relapsing-remitting MS (30 female/21 male; mean age, 35.4 ± 9.9 years). Mean metabolic ratios were calculated for segmented regions of interest (ROIs) of normal-appearing white matter, white matter lesions, and focal regions of increased mIns/tNAA invisible on cMRI. A subgroup analysis was performed after subdividing based on T1 relaxation and distance to cortical GM. Metabolite ratios were correlated with T1 and compared between different layers around cMRI-visible lesions. RESULTS: Focal regions of, on average, 2.8-fold higher mIns/tNAA than surrounding normal-appearing white matter and with an appearance similar to that of MS lesions were found, which were not visible on cMRI (ie, ~4% of metabolic hotspots). T1 relaxation was positively correlated with mIns/tNAA ( P ≤ 0.01), and negatively with tNAA/tCr ( P ≤ 0.01) and tCho/tCr ( P ≤ 0.01). mIns/tCr was increased outside lesions, whereas tNAA/tCr distributions resembled macroscopic tissue damage inside the lesions. mIns/tCr was -21% lower for lesions closer to cortical GM ( P ≤ 0.05). CONCLUSIONS: 7 T MRSI allows in vivo visualization of focal MS pathology not visible on cMRI and the assessment of metabolite levels in the lesion center, in the active lesion periphery and in cortical lesions. This demonstrated the potential of MRSI to image mIns as an early biomarker in lesion development.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética , Receptores de Antígenos de Linfocitos T/metabolismo
9.
Cancers (Basel) ; 14(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35565293

RESUMEN

(1) Background: Recent developments in 7T magnetic resonance spectroscopic imaging (MRSI) made the acquisition of high-resolution metabolic images in clinically feasible measurement times possible. The amino acids glutamine (Gln) and glycine (Gly) were identified as potential neuro-oncological markers of importance. For the first time, we compared 7T MRSI to amino acid PET in a cohort of glioma patients. (2) Methods: In 24 patients, we co-registered 7T MRSI and routine PET and compared hotspot volumes of interest (VOI). We evaluated dice similarity coefficients (DSC), volume, center of intensity distance (CoI), median and threshold values for VOIs of PET and ratios of total choline (tCho), Gln, Gly, myo-inositol (Ins) to total N-acetylaspartate (tNAA) or total creatine (tCr). (3) Results: We found that Gln and Gly ratios generally resulted in a higher correspondence to PET than tCho. Using cutoffs of 1.6-times median values of a control region, DSCs to PET were 0.53 ± 0.36 for tCho/tNAA, 0.66 ± 0.40 for Gln/tNAA, 0.57 ± 0.36 for Gly/tNAA, and 0.38 ± 0.31 for Ins/tNAA. (4) Conclusions: Our 7T MRSI data corresponded better to PET than previous studies at lower fields. Our results for Gln and Gly highlight the importance of future research (e.g., using Gln PET tracers) into the role of both amino acids.

10.
Radiology ; 303(1): 141-150, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34981978

RESUMEN

Background MR spectroscopic imaging (MRSI) allows in vivo assessment of brain metabolism and is of special interest in multiple sclerosis (MS), where morphologic MRI cannot depict major parts of disease activity. Purpose To evaluate the ability of 7.0-T MRSI to depict and visualize pathologic alterations in the normal-appearing white matter (NAWM) and cortical gray matter (CGM) in participants with MS and to investigate their relation to disability. Materials and Methods Free-induction decay MRSI was performed at 7.0 T. Participants with MS and age- and sex-matched healthy controls were recruited prospectively between January 2016 and December 2017. Metabolic ratios were obtained in white matter lesions, NAWM, and CGM regions. Subgroup analysis for MS-related disability based on Expanded Disability Status Scale (EDSS) scores was performed using analysis of covariance. Partial correlations were applied to explore associations between metabolic ratios and disability. Results Sixty-five participants with MS (mean age ± standard deviation, 34 years ± 9; 34 women) and 20 age- and sex-matched healthy controls (mean age, 32 years ± 7; 11 women) were evaluated. Higher signal intensity of myo-inositol (mI) with and without reduced signal intensity of N-acetylaspartate (NAA) was visible on metabolic images in the NAWM of participants with MS. A higher ratio of mI to total creatine (tCr) was observed in the NAWM of the centrum semiovale of all MS subgroups, including participants without disability (marginal mean ± standard error, healthy controls: 0.78 ± 0.04; EDSS 0-1: 0.86 ± 0.03 [P = .02]; EDSS 1.5-3: 0.95 ± 0.04 [P < .001]; EDSS ≥3.5: 0.94 ± 0.04 [P = .001]). A lower ratio of NAA to tCr was found in MS subgroups with disabilities, both in their NAWM (marginal mean ± standard error, healthy controls: 1.46 ± 0.04; EDSS 1.5-3: 1.33 ± 0.03 [P = .03]; EDSS ≥3.5: 1.30 ± 0.04 [P = .01]) and CGM (marginal mean ± standard error, healthy controls: 1.42 ± 0.05; EDSS ≥3.5: 1.23 ± 0.05 [P = .006]). mI/NAA correlated with EDSS (NAWM of centrum semiovale: r = 0.47, P < .001; parietal NAWM: r = 0.43, P = .002; frontal NAWM: r = 0.34, P = .01; frontal CGM: r = 0.37, P = .004). Conclusion MR spectroscopic imaging at 7.0 T allowed in vivo visualization of multiple sclerosis pathologic findings not visible at T1- or T2-weighted MRI. Metabolic abnormalities in the normal-appearing white matter and cortical gray matter were associated with disability. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Barker in this issue.


Asunto(s)
Personas con Discapacidad , Esclerosis Múltiple , Sustancia Blanca , Adulto , Encéfalo/patología , Creatina/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Esclerosis Múltiple/patología , Receptores de Antígenos de Linfocitos T/metabolismo , Sustancia Blanca/patología
11.
NMR Biomed ; 34(12): e4596, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34382280

RESUMEN

PURPOSE: Recently, a 3D-concentric ring trajectory (CRT)-based free induction decay (FID)-MRSI sequence was introduced for fast high-resolution metabolic imaging at 7 T. This technique provides metabolic ratio maps of almost the entire brain within clinically feasible scan times, but its robustness has not yet been thoroughly investigated. Therefore, we have assessed quantitative concentration estimates and their variability in healthy volunteers using this approach. METHODS: We acquired whole-brain 3D-CRT-FID-MRSI at 7 T in 15 min with 3.4 mm nominal isometric resolution in 24 volunteers (12 male, 12 female, mean age 27 ± 6 years). Concentration estimate maps were calculated for 15 metabolites using internal water referencing and evaluated in 55 different regions of interest (ROIs) in the brain. Data quality, mean metabolite concentrations, and their inter-subject coefficients of variation (CVs) were compared for all ROIs. RESULTS: Of 24 datasets, one was excluded due to motion artifacts. The concentrations of total choline, total creatine, glutamate, myo-inositol, and N-acetylaspartate in 44 regions were estimated within quality thresholds. Inter-subject CVs (mean over 44 ROIs/minimum/maximum) were 9%/5%/19% for total choline, 10%/6%/20% for total creatine, 11%/7%/24% for glutamate, 10%/6%/19% for myo-inositol, and 9%/6%/19% for N-acetylaspartate. DISCUSSION: We defined the performance of 3D-CRT-based FID-MRSI for metabolite concentration estimate mapping, showing which metabolites could be robustly quantified in which ROIs with which inter-subject CVs expected. However, the basal brain regions and lesser-signal metabolites in particular remain as a challenge due susceptibility effects from the proximity to nasal and auditory cavities. Further improvement in quantification and the mitigation of B0 /B1 -field inhomogeneities will be necessary to achieve reliable whole-brain coverage.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Masculino , Adulto Joven
12.
Magn Reson Med ; 86(5): 2353-2367, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34061405

RESUMEN

PURPOSE: State-of-the-art whole-brain MRSI with spatial-spectral encoding and multichannel acquisition generates huge amounts of data, which must be efficiently processed to stay within reasonable reconstruction times. Although coil combination significantly reduces the amount of data, currently it is performed in image space at the end of the reconstruction. This prolongs reconstruction times and increases RAM requirements. We propose an alternative k-space-based coil combination that uses geometric deep learning to combine MRSI data already in native non-Cartesian k-space. METHODS: Twelve volunteers were scanned at a 3T MR scanner with a 20-channel head coil at 10 different positions with water-unsuppressed MRSI. At the eleventh position, water-suppressed MRSI data were acquired. Data of 7 volunteers were used to estimate sensitivity maps and form a base for simulating training data. A neural network was designed and trained to remove the effect of sensitivity profiles of the coil elements from the MRSI data. The water-suppressed MRSI data of the remaining volunteers were used to evaluate the performance of the new k-space-based coil combination relative to that of a conventional image-based alternative. RESULTS: For both approaches, the resulting metabolic ratio maps were similar. The SNR of the k-space-based approach was comparable to the conventional approach in low SNR regions, but underperformed for high SNR. The Cramér-Rao lower bounds show the same trend. The analysis of the FWHM showed no difference between the two methods. CONCLUSION: k-Space-based coil combination of MRSI data is feasible and reduces the amount of raw data immediately after their sampling.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Relación Señal-Ruido
13.
Neuroimage Clin ; 28: 102433, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32977210

RESUMEN

OBJECTIVES: Successful neurosurgical intervention in gliomas depends on the precision of the preoperative definition of the tumor and its margins since a safe maximum resection translates into a better patient outcome. Metabolic high-resolution imaging might result in improved presurgical tumor characterization, and thus optimized glioma resection. To this end, we validated the performance of a fast high-resolution whole-brain 3D-magnetic resonance spectroscopic imaging (MRSI) method at 7T in a patient cohort of 23 high-grade gliomas (HGG). MATERIALS AND METHODS: We preoperatively measured 23 patients with histologically verified HGGs (17 male, 8 female, age 53 ± 15) with an MRSI sequence based on concentric ring trajectories with a 64 × 64 × 39 measurement matrix, and a 3.4 × 3.4 × 3.4 mm3 nominal voxel volume in 15 min. Quantification used a basis-set of 17 components including N-acetyl-aspartate (NAA), total choline (tCho), total creatine (tCr), glutamate (Glu), glutamine (Gln), glycine (Gly) and 2-hydroxyglutarate (2HG). The resultant metabolic images were evaluated for their reliability as well as their quality and compared to spatially segmented tumor regions-of-interest (necrosis, contrast-enhanced, non-contrast enhanced + edema, peritumoral) based on clinical data and also compared to histopathology (e.g., grade, IDH-status). RESULTS: Eighteen of the patient measurements were considered usable. In these patients, ten metabolites were quantified with acceptable quality. Gln, Gly, and tCho were increased and NAA and tCr decreased in nearly all tumor regions, with other metabolites such as serine, showing mixed trends. Overall, there was a reliable characterization of metabolic tumor areas. We also found heterogeneity in the metabolic images often continued into the peritumoral region. While 2HG could not be satisfyingly quantified, we found an increase of Glu in the contrast-enhancing region of IDH-wildtype HGGs and a decrease of Glu in IDH1-mutant HGGs. CONCLUSIONS: We successfully demonstrated high-resolution 7T 3D-MRSI in HGG patients, showing metabolic differences between tumor regions and peritumoral tissue for multiple metabolites. Increases of tCho, Gln (related to tumor metabolism), Gly (related to tumor proliferation), as well as decreases in NAA, tCr, and others, corresponded very well to clinical tumor segmentation, but were more heterogeneous and often extended into the peritumoral region.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Anciano , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagen , Femenino , Glioma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
14.
Magn Reson Med ; 83(1): 12-21, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31393037

RESUMEN

PURPOSE: A properly characterized macromolecular (MM) contribution is essential for accurate metabolite quantification in FID-MRSI. MM information can be included into the fitting model as a single component or parameterized and included over several individual MM resonances, which adds flexibility when pathologic changes are present but is prone to potential overfitting. This study investigates the effects of different MM models on MRSI reproducibility. METHODS: Clinically feasible, high-resolution FID-MRSI data were collected in ~5 min at 7 Tesla from 10 healthy volunteers and quantified via LCModel (version 6.3) with 3 basis sets, each with a different approach for how the MM signal was handled: averaged measured whole spectrum (full MM), 9 parameterized components (param MM) with soft constraints to avoid overparameterization, or without any MM information included in the fitting prior knowledge. The test-retest reproducibility of MRSI scans was assessed voxel-wise using metabolite coefficients of variation and intraclass correlation coefficients and compared between the basis sets. Correlations of concentration estimates were investigated for the param MM fitting model. RESULTS: The full MM model provided the most reproducible quantification of total NAA, total Cho, myo-inositol, and glutamate + glutamine ratios to total Cr (coefficients of variations ≤ 8%, intraclass correlation coefficients ≥ 0.76). Using the param MM model resulted in slightly lower reproducibility (up to +3% higher coefficients of variations, up to -0.1 decreased intraclass correlation coefficients). The quantification of the parameterized macromolecules did not affect quantification of the overlapping metabolites. CONCLUSION: Clinically feasible FID-MRSI with an experimentally acquired MM spectrum included in prior knowledge provides highly reproducible quantification for the most common neurometabolites in healthy volunteers. Parameterization of the MM spectrum may be preferred as a compromise between quantification accuracy and reproducibility when the MM content is expected to be pathologically altered.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Adulto , Algoritmos , Femenino , Voluntarios Sanos , Humanos , Sustancias Macromoleculares , Masculino , Fantasmas de Imagen , Reproducibilidad de los Resultados , Adulto Joven
15.
Invest Radiol ; 55(4): 239-248, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31855587

RESUMEN

OBJECTIVES: Available clinical magnetic resonance spectroscopic imaging (MRSI) sequences are hampered by long scan times, low spatial resolution, strong field inhomogeneities, limited volume coverage, and low signal-to-noise ratio. High-resolution, whole-brain mapping of more metabolites than just N-acetylaspartate, choline, and creatine within clinically attractive scan times is urgently needed for clinical applications. The aim is therefore to develop a free induction decay (FID) MRSI sequence with rapid concentric ring trajectory (CRT) encoding for 7 T and demonstrate its clinical feasibility for mapping the whole cerebrum of healthy volunteers and patients. MATERIALS AND METHODS: Institutional review board approval and written informed consent were obtained. Time-efficient, 3-dimensional encoding of an ellipsoidal k-space by in-plane CRT and through-plane phase encoding was integrated into an FID-MRSI sequence. To reduce scan times further, repetition times were shortened, and variable temporal interleaves were applied. Measurements with different matrix sizes were performed to validate the CRT encoding in a resolution phantom. One multiple sclerosis patient, 1 glioma patient, and 6 healthy volunteers were prospectively measured. For the healthy volunteers, brain segmentation was performed to quantify median metabolic ratios, Cramér-Rao lower bounds (CRLBs), signal-to-noise ratios, linewidths, and brain coverage among all measured matrix sizes ranging from a 32 × 32 × 31 matrix with 6.9 × 6.9 × 4.2 mm nominal voxel size acquired in ~3 minutes to an 80 × 80 × 47 matrix with 2.7 × 2.7 × 2.7 mm nominal voxel size in ~15 minutes for different brain regions. RESULTS: Phantom structures with diameters down to 3 to 4 mm were visible. In vivo MRSI provided high spectral quality (median signal-to-noise ratios, >6.3 and linewidths, <0.082 ppm) and fitting quality. Cramér-Rao lower bounds were ranging from less than 22% for glutamine (highest CRLB in subcortical gray matter) to less than 9.5% for N-acetylaspartate for the 80 × 80 × 47 matrix (highest CRLB in the temporal lobe). This enabled reliable mapping of up to 8 metabolites (N-acetylaspartate, N-acetylaspartyl glutamate, total creatine, glutamine, glutamate, total choline, myo-inositol, glycine) and macromolecules for all resolutions. Coverage of the whole cerebrum allowed visualization of the full extent of diffuse and local multiple sclerosis-related neurochemical changes (eg, up to 100% increased myo-inositol). Three-dimensional brain tumor metabolic maps provided valuable information beyond that of single-slice MRSI, with up to 200% higher choline, up to 100% increased glutamine, and increased glycine in tumor tissue. CONCLUSIONS: Seven Tesla FID-MRSI with time-efficient CRT readouts offers clinically attractive acquisition protocols tailored either for speed or for the investigation of small pathologic details and low-abundant metabolites. This can complement clinical MR studies of various brain disorders. Significant metabolic anomalies were demonstrated in a multiple sclerosis and a glioma patient for myo-inositol, glutamine, total choline, glycine, and N-acetylaspartate concentrations.


Asunto(s)
Encefalopatías/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagenología Tridimensional/métodos , Espectroscopía de Resonancia Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagen , Estudios de Factibilidad , Femenino , Humanos , Masculino , Fantasmas de Imagen , Estudios Prospectivos , Relación Señal-Ruido
16.
Magn Reson Med ; 83(6): 1920-1929, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31721294

RESUMEN

PURPOSE: In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric-ring trajectories (CRTs) at 3T. FID-MRSI has many benefits including high detection sensitivity, in particular for J-coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D-FID-MRSI sequence with single-echo, imaging-based volumetric navigators (se-vNavs) for real-time motion/shim-correction (SHMOCO), which is 2× quicker than the original double-echo navigators (de-vNavs), hence allowing more efficient integration also in short-TR sequences. METHODS: The tracking accuracy (position and B0 -field) of our proposed se-vNavs was compared to the original de-vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra-session stability of a 5:40 min 3D-FID-MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter-subject coefficients of variation (CV) and intra-class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed. RESULTS: Phantom and in vivo scans showed highly consistent tracking performance for se-vNavs compared to the original de-vNavs, but lower frequency drift. Up to ~30% better intra-subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m-Ins ratios to tCr. ICCs were good-to-high (91% for Glx/tCr in motor cortex), whereas the inter-subject variability was ~11-19%. CONCLUSION: Real-time motion/shim corrected 3D-FID-MRSI with time-efficient CRT-sampling at 3T allows reliable, high-resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI.


Asunto(s)
Encéfalo , Cabeza , Encéfalo/diagnóstico por imagen , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados
17.
Front Oncol ; 9: 1010, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649879

RESUMEN

Magnetic resonance spectroscopic imaging (SI) is a unique imaging technique that provides biochemical information from in vivo tissues. The 1H spectra acquired from several spatial regions are quantified to yield metabolite concentrations reflective of tissue metabolism. However, since these metabolites are found in tissues at very low concentrations, SI is often acquired with limited spatial resolution. In this work, we test the hypothesis that deep learning is able to upscale low resolution SI, together with the T1-weighted (T1w) image, to reconstruct high resolution SI. We report on a novel densely connected UNet (D-UNet) architecture capable of producing super-resolution spectroscopic images. The inputs for the D-UNet are the T1w image and the low resolution SI image while the output is the high resolution SI. The results of the D-UNet are compared both qualitatively and quantitatively to simulated and in vivo high resolution SI. It is found that this deep learning approach can produce high quality spectroscopic images and reconstruct entire 1H spectra from low resolution acquisitions, which can greatly advance the current SI workflow.

18.
Magn Reson Med ; 82(5): 1587-1603, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31183893

RESUMEN

PURPOSE: Proton MR spectroscopic imaging (MRSI) benefits from B0 ≥ 7T and multichannel receive coils, promising substantial resolution improvements. However, MRSI acquisition with high spatial resolution requires efficient acceleration and coil combination. To speed up the already-fast sampling via concentric rings, we implemented additional, non-Cartesian, hybrid through-time/through-k-space (tt/tk)-generalized autocalibrating partially parallel acquisition (GRAPPA). A new multipurpose interleaved calibration scan (interleaved MUSICAL) acquires reference data for both coil combination and PI. This renders the reconstruction process (especially PI) less sensitive to instabilities. METHODS: Six healthy volunteers were scanned at 7T. Three calibration datasets for coil combination and PI were recorded: a) iMUSICAL, b) static MUSICAL as prescan, c) moved MUSICAL as prescan with misaligned head position. The coil combination performance, including motion sensitivity, of iMUSICAL was compared to MUSICAL for single-slice free induction decay (FID)-MRSI. Through-time/through-k-space-GRAPPA with constant/variable-density undersampling was evaluated on the same data, comparing the three calibration datasets. Additionally, the proposed method was successfully applied to 3D whole-brain FID-MRSI. RESULTS: Using iMUSICAL for coil combination yielded the highest signal-to-noise ratio (SNR) (+9%) and lowest Cramer-Rao lower bounds (CRLBs) (-6%) compared to both MUSICAL approaches, with similar metabolic map quality. Also, excellent mean g-factors of 1.07 and low residual lipid aliasing were obtained when using iMUSICAL as calibration data for two-fold, variable-density undersampling, while significantly degraded metabolic maps were obtained using the misaligned MUSICAL calibration data. CONCLUSION: Through-time/through-k-space-GRAPPA can accelerate already time-efficient non-Cartesian spatial-spectral 2D/3D-MRSI encoding even further. Particularly promising results have been achieved using iMUSICAL as a robust, interleaved multipurpose calibration for MRSI reconstruction, without extra calibration prescan.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/metabolismo , Aumento de la Imagen/métodos , Imagenología Tridimensional , Espectroscopía de Resonancia Magnética/métodos , Calibración , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Espectroscopía de Resonancia Magnética/instrumentación , Relación Señal-Ruido
19.
Magn Reson Med ; 82(2): 551-565, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30932248

RESUMEN

PURPOSE: Inhomogeneities in the static magnetic field (B0 ) deteriorate MRSI data quality by lowering the spectral resolution and SNR. MRSI with low spatial resolution is also prone to lipid bleeding. These problems are increasingly problematic at ultra-high fields. An approach to tackling these challenges independent of B0 -shim hardware is to increase the spatial resolution. Therefore, we investigated the effect of improved spatial resolution on spectral quality and quantification at 4 field strengths. METHODS: Whole-brain MRSI data was simulated for 3 spatial resolutions and 4 B0 s based on experimentally acquired MRI data and simulated free induction decay signals of metabolites and lipids. To compare the spectral quality and quantification, we derived SNR normalized to the voxel size (nSNR), linewidth and metabolite concentration ratios, their Cramer-Rao-lower-bounds (CRLBs), and the absolute percentage error (APE) of estimated concentrations compared to the gold standard for the whole-brain and 8 brain regions. RESULTS: At 7T, we found up to a 3.4-fold improved nSNR (in the frontal lobe) and a 2.8-fold reduced linewidth (in the temporal lobe) for 1 cm3 versus 0.25 cm3 resolution. This effect was much more pronounced at higher and less homogenous B0 (1.6-fold improved nSNR and 1.8-fold improved linewidth in the parietal lobe at 3T). This had direct implications for quantification: the volume of reliably quantified spectra increased with resolution by 1.2-fold and 1.5-fold (when thresholded by CRLBs or APE, respectively). CONCLUSION: MRSI data quality benefits from increased spatial resolution particularly at higher B0 , and leads to more reliable metabolite quantification. In conjunction with the development of better B0 shimming hardware, this will enable robust whole-brain MRSI at ultra-high field.


Asunto(s)
Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Femenino , Humanos , Masculino , Fantasmas de Imagen , Relación Señal-Ruido , Adulto Joven
20.
Invest Radiol ; 54(1): 48-54, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30157100

RESUMEN

OBJECTIVE: The aim of this study was to assess and compare the overall performance, reliability, variability, as well as the accuracy of diffusion tensor imaging (DTI) and fiber tracking metrics, for the muscles of the calf at 3 T and 7 T. MATERIALS AND METHODS: Ten volunteers (5 males; mean age, 29.1 ± 4.7 years), with no history of muscle disease, were examined twice at 3 T and 7 T, using a stimulated-echo acquisition mode DTI sequence. Signal-to-noise ratio (SNR) and DTI metrics (track numbers [trn], length [trl], volume [trv], fractional anisotropy [FA], mean [MD], axial [AD], and radial diffusivity [RD]) of the whole-calf muscles, the tibialis anterior, the gastrocnemius medialis, the gastrocnemius lateralis, and the soleus were collected. The Student t test was used to compare SNR and DTI metrics obtained at 3 T and 7 T. The coefficients of variation and the intraclass correlation coefficients were derived to assess the variability and the reliability of the DTI measurements at 3 T and 7 T. To further assess the accuracy of the measurements, the absolute difference was computed for each DTI metric at 3 T and 7 T and then compared (Student t test). The applied level of significance for all the statistical analyses was P < 0.05. RESULTS: As expected, the SNR was higher at 7 T than at 3 T (+111%; P < 0.001). At 7 T, the tracked fibers of the whole calf muscles, the gastrocnemii, and the soleus were more numerous (trn +5.5%, +3.1%, +8.5%, and +15.1%, respectively), longer (trl +13.1%, +18.8%, +19.3%, and +33.3%, respectively), and showed a greater volume (trv +12.1%, +12.2%, +14.7%, and +15.7%, respectively) than at 3 T (P < 0.05 each). The soleus demonstrated higher FA (+14.3%), lower MD (-1.7%), AD (-1.9%), and RD (-2%) at 7 T than at 3 T (P < 0.05 each), whereas the other muscles showed more heterogeneous results. The coefficients of variation were good (ie, <10%) for all DTI metrics at both 3 T and 7 T. The intraclass correlation coefficient was excellent (>0.750) at 7 T and 3 T for several DTI metrics, such as the trn of the gastrocnemii and the soleus, the trv of the gastrocnemii, the FA of the whole-calf muscles, gastrocnemius medialis, tibialis anterior, and soleus, and the RD of all investigated muscles (ie, whole-calf muscles, gastrocnemii, tibialis anterior, and soleus). There were no significant differences between the 2 consecutive measurements with each device, except for the trn of the whole-calf muscles and the FA of the gastrocnemius lateralis (higher mean absolute difference at 3 T and 7 T, respectively; P < 0.05 each). CONCLUSIONS: Despite the numerous challenges associated with DTI of the muscles, both 3 T and 7 T demonstrated reliable and precise results.


Asunto(s)
Imagen de Difusión Tensora/métodos , Músculo Esquelético/anatomía & histología , Adulto , Femenino , Humanos , Pierna/anatomía & histología , Pierna/diagnóstico por imagen , Masculino , Músculo Esquelético/diagnóstico por imagen , Estudios Prospectivos , Valores de Referencia , Reproducibilidad de los Resultados , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA