Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930977

RESUMEN

Specialized chemicals are used for intensifying food production, including boosting meat and crop yields. Among the applied formulations, antibiotics and pesticides pose a severe threat to the natural balance of the ecosystem, as they either contribute to the development of multidrug resistance among pathogens or exhibit ecotoxic and mutagenic actions of a persistent character. Recently, cold atmospheric pressure plasmas (CAPPs) have emerged as promising technologies for degradation of these organic pollutants. CAPP-based technologies show eco-friendliness and potency for the removal of organic pollutants of diverse chemical formulas and different modes of action. For this reason, various types of CAPP-based systems are presented in this review and assessed in terms of their constructions, types of discharges, operating parameters, and efficiencies in the degradation of antibiotics and persistent organic pollutants. Additionally, the key role of reactive oxygen and nitrogen species (RONS) is highlighted. Moreover, optimization of the CAPP operating parameters seems crucial to effectively remove contaminants. Finally, the CAPP-related paths and technologies are further considered in terms of biological and environmental effects associated with the treatments, including changes in antibacterial properties and toxicity of the exposed solutions, as well as the potential of the CAPP-based strategies for limiting the spread of multidrug resistance.


Asunto(s)
Presión Atmosférica , Gases em Plasma , Gases em Plasma/química , Contaminantes Ambientales/química , Industria de Alimentos , Antibacterianos/química , Antibacterianos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Compuestos Orgánicos/química
2.
Sci Rep ; 13(1): 18863, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914755

RESUMEN

Dickeya solani is an economically significant pectinolytic phytopathogen belonging to the Pectobacteriaceae family, which causes soft rot and blackleg diseases. Despite its notable impact on global potato production, there are no effective methods to control this pest. Here, we undertook a phyloproteomic study on 20 D. solani strains, of various origin and year of isolation, with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) supported by an in-depth characterization of the strains in terms of the virulence-associated phenotype. In spite of high homogeneity in this species, we herein revealed for the first time intraspecies variation in the MALDI-TOF MS protein profiles among the studied D. solani isolates. Finally, representative mass spectra for the four delineated clades are presented. A majority of the analysed D. solani strains showed high virulence potential, while two strains stood out in their growth dynamics, virulence factors production and ability to macerate plant tissue. Nonetheless, the metabolic profiles of D. solani strains turned out to be uniform, except for gelatinase activity. Given that all D. solani isolates distinctly grouped from the other Dickeya species in the MALDI-TOF MS analysis, there is strong evidence supporting the potential routine use of this method for fast and reliable to-species identification of D. solani isolates of environmental origin.


Asunto(s)
Enterobacteriaceae , Gammaproteobacteria , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Enterobacteriaceae/genética , Dickeya
3.
Carbohydr Res ; 534: 108983, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37980861

RESUMEN

Pectobacterium brasiliense is a widely distributed phytopathogenic bacterium that causes diseases such as soft rot and blackleg, leading to significant yield losses in potatoes as well as other vegetables and ornamental plants. Lipopolysaccharide (LPS) is an important virulence factor that plays an essential role in colonisation of plant tissues and overcoming the host defence mechanisms. The O-polysaccharide from the LPS of P. brasiliense strain NCPPB 4609TS (=CFBP 6617TS = LMG 21371TS = IFB5390) was structurally characterised using spectroscopic techniques and chemical methods. The analyses revealed that the polysaccharide repeating unit consists of Gal, GlcN and an unusual 3-amino-3,6-dideoxyglucose decorated with (R)-3-hydroxybutyric acid according to the structure shown below: In addition, another polysaccharide was isolated from bacterial cells, analysis of which led to the identification of an enterobacterial common antigen, containing N-acetyl-d-glucosamine, N-acetyl-d-mannosaminouronic acid, and 4-acetamido-4,6-dideoxy-d-galactose.


Asunto(s)
Antígenos O , Pectobacterium , Antígenos O/química , Lipopolisacáridos/química
4.
Carbohydr Res ; 527: 108806, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37058948

RESUMEN

Pectobacterium brasiliense is a widespread plant pathogenic bacterium classified to the Pectobacteriaceae family, which causes significant economic losses because of the developed soft rot and blackleg symptoms on potatoes and a wide spectrum of crops, vegetables, and ornamentals. One of the key virulence factors is a lipopolysaccharide due to its involvement in efficient colonisation of plant tissues and overcoming the host defence mechanisms. Thus, we structurally characterised the O-polysaccharide from the LPS of P. brasiliense strain IFB5527 (HAFL05) using chemical methods followed by GLC and GLC-MS as well as 1D and 2D NMR spectroscopy. The analyses revealed that the polysaccharide repeating unit consists of Fuc, Glc, GlcN and an unusual N-formylated 6-deoxy amino sugar, Qui3NFo, and has the structure shown below.


Asunto(s)
Lipopolisacáridos , Pectobacterium , Pectobacterium/química , Polisacáridos/química
5.
Carbohydr Res ; 522: 108696, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36335652

RESUMEN

Soft rot and blackleg diseases, caused by pectinolytic bacteria from the numerous species of Dickeya and Pectobacterium, pose a serious threat to the world potato production. Besides, infections triggered by these pectinolytic bacteria lead to huge economic losses in the cultivation of other crops, vegetables, and ornamentals. Strains belonging to the genus Pectobacterium tend to be isolated from various environments such as rotten or asymptomatic plants, weeds, soil or water. The main virulence factors of these phytopathogenic bacteria involve plant cell wall degrading enzymes (PCWDEs) i.e. pectinases, cellulases and proteases. Among accessory virulence factors, there is often lipopolysaccharide (LPS) listed. This constituent of the external part of bacterial cell wall contains lipid A, inner and outer core in addition to O-polysaccharide (OPS). LPS plays an important role in plant-microbe interactions, in particular during the first step of pathogen recognition. In this study we present the chemical structure of OPS of the first Pectobacterium aquaticum strain (IFB5637) isolated from water in Poland. The OPS consists of two common hexoses, such as mannose and glucose, as well as an abequose (3,6-dideoxy-d-xylo-hexose), the first 3,6-dideoxyhexose identified among the Pectobacteriaceae family: According to our best knowledge this is the first determined structure of the OPS of P. aquaticum.


Asunto(s)
Pectobacterium , Solanum tuberosum , Lipopolisacáridos , Enfermedades de las Plantas/microbiología , Hexosas , Solanum tuberosum/microbiología , Factores de Virulencia , Agua
6.
Sci Rep ; 12(1): 7354, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513687

RESUMEN

Doxycycline (DOX), an antibiotic commonly used in medicine and veterinary, is frequently detected in natural waterways. Exposition of bacteria to DOX residuals poses a selective pressure leading to a common occurrence of DOX-resistance genetic determinants among microorganisms, including virulent human pathogens. In view of diminishment of the available therapeutic options, we developed a continuous-flow reaction-discharge system generating pulse-modulated radio-frequency atmospheric pressure glow discharge (pm-rf-APGD) intended for DOX removal from liquid solutions. A Design of Experiment and a Response Surface Methodology were implemented in the optimisation procedure. The removal efficiency of DOX equalling 79 ± 4.5% and the resultant degradation products were identified by High-Performance Liquid Chromatography-Diode Array Detection, Liquid Chromatography Quadruple Time of Flight Mass Spectrometry, Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry, total organic carbon, total nitrogen, Attenuated Total Reflectance Furrier Transform-Infrared, and UV/Vis-based methods. The pm-rf-APGD-treated DOX solution due to the generated Reactive Oxygen and Nitrogen Species either lost its antimicrobial properties towards Escherichia coli ATCC25922 or significantly decreased biocidal activities by 37% and 29% in relation to Staphylococcus haemolyticus ATCC29970 and Staphylococcus aureus ATCC25904, respectively. Future implementation of this efficient and eco-friendly antibiotic-degradation technology into wastewater purification systems is predicted.


Asunto(s)
Líquidos Corporales , Doxiciclina , Antibacterianos/farmacología , Presión Atmosférica , Doxiciclina/farmacología , Escherichia coli , Humanos , Nitrógeno
7.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216191

RESUMEN

Pectobacterium parmentieri is a pectinolytic plant pathogenic bacterium causing high economic losses of cultivated plants. The highly devastating potential of this phytopathogen results from the efficient production of plant cell wall-degrading enzymes, i.e., pectinases, cellulases and proteases, in addition to the impact of accessory virulence factors such as motility, siderophores, biofilm and lipopolysaccharide (LPS). LPS belongs to pathogen-associated molecular patterns (PAMPs) and plays an important role in plant colonization and interaction with the defense systems of the host. Therefore, we decided to investigate the heterogeneity of O-polysaccharides (OPS) of LPS of different strains of P. parmentieri, in search of an association between the selected genomic and phenotypic features of the strains that share an identical structure of the OPS molecule. In the current study, OPS were isolated from the LPS of two P. parmentieri strains obtained either in Finland in the 1980s (SCC3193) or in Poland in 2013 (IFB5432). The purified polysaccharides were analyzed by utilizing 1D and 2D NMR spectroscopy (1H, DQF-COSY, TOCSY, ROESY, HSQC, HSQC-TOCSY and HMBC) in addition to chemical methods. Sugar and methylation analyses of native polysaccharides, absolute configuration assignment of constituent monosaccharides and NMR spectroscopy data revealed that these two P. parmentieri strains isolated in different countries possess the same structure of OPS with a very rare residue of 5,7-diamino-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (pseudaminic acid) substituted in the position C-8: →3)-ß-d-Galf-(1→3)-α-d-Galp-(1→8)-ß-Pse4Ac5Ac7Ac-(2→6)-α-d-Glcp-(1→6)-ß-d-Glcp-(1→. The previous study indicated that three other P. parmentieri strains, namely IFB5427, IFB5408 and IFB5443, exhibit a different OPS molecule than SCC3193 and IFB5432. The conducted biodiversity-oriented assays revealed that the P. parmentieri IFB5427 and IFB5408 strains possessing the same OPS structure yielded the highest genome-wide similarity, according to average nucleotide identity analyses, in addition to the greatest ability to macerate chicory tissue among the studied P. parmentieri strains. The current research demonstrated a novel OPS structure, characteristic of at least two P. parmentieri strains (SCC3193 and IFB5432), and discussed the observed heterogenicity in the OPS of P. parmentieri in a broad genomic and phenotype-related context.


Asunto(s)
Lipopolisacáridos/genética , Pectobacterium/genética , Plantas/microbiología , Finlandia , Genoma/genética , Genómica/métodos , Fenotipo , Filogenia , Enfermedades de las Plantas/microbiología , Polonia , Factores de Virulencia/genética
8.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502164

RESUMEN

Plant pathogenic bacteria cause significant economic losses in the global food production sector. To secure an adequate amount of high-quality nutrition for the growing human population, novel approaches need to be undertaken to combat plant disease-causing agents. As the currently available methods to eliminate bacterial phytopathogens are scarce, we evaluated the effectiveness and mechanism of action of a non-thermal atmospheric pressure plasma (NTAPP). It was ignited from a dielectric barrier discharge (DBD) operation in a plasma pencil, and applied for the first time for eradication of Dickeya and Pectobacterium spp., inoculated either on glass spheres or mung bean seeds. Furthermore, the impact of the DBD exposure on mung bean seeds germination and seedlings growth was estimated. The observed bacterial inactivation rates exceeded 3.07 logs. The two-minute DBD exposure stimulated by 3-4% the germination rate of mung bean seeds and by 13.4% subsequent early growth of the seedlings. On the contrary, a detrimental action of the four-minute DBD subjection on seed germination and early growth of the sprouts was noted shortly after the treatment. However, this effect was no longer observed or reduced to 9.7% after the 96 h incubation period. Due to the application of optical emission spectrometry (OES), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM), we found that the generated reactive oxygen and nitrogen species (RONS), i.e., N2, N2+, NO, OH, NH, and O, probably led to the denaturation and aggregation of DNA, proteins, and ribosomes. Furthermore, the cellular membrane disrupted, leading to an outflow of the cytoplasm from the DBD-exposed cells. This study suggests the potential applicability of NTAPPs as eco-friendly and innovative plant protection methods.


Asunto(s)
Enfermedades de las Plantas/prevención & control , Gases em Plasma/farmacología , Semillas/efectos de los fármacos , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/ultraestructura , Germinación/efectos de los fármacos , Humanos , Enfermedades de las Plantas/microbiología , Gases em Plasma/administración & dosificación , Plantones/efectos de los fármacos , Semillas/microbiología , Vigna/efectos de los fármacos , Vigna/microbiología
9.
Int J Mol Sci ; 22(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062832

RESUMEN

To the present day, no efficient plant protection method against economically important bacterial phytopathogens from the Pectobacteriaceae family has been implemented into agricultural practice. In this view, we have performed a multivariate optimization of the operating parameters of the reaction-discharge system, employing direct current atmospheric pressure glow discharge, generated in contact with a flowing liquid cathode (FLC-dc-APGD), for the production of a plasma-activated liquid (PAL) of defined physicochemical and anti-phytopathogenic properties. As a result, the effect of the operating parameters on the conductivity of PAL acquired under these conditions was assessed. The revealed optimal operating conditions, under which the PAL of the highest conductivity was obtained, were as follows: flow rate of the solution equaled 2.0 mL min-1, the discharge current was 30 mA, and the inorganic salt concentration (ammonium nitrate, NH4NO3) in the solution turned out to be 0.50% (m/w). The developed PAL exhibited bacteriostatic and bactericidal properties toward Dickeya solani IFB0099 and Pectobacterium atrosepticum IFB5103 strains, with minimal inhibitory and minimal bactericidal concentrations equaling 25%. After 24 h exposure to 25% PAL, 100% (1-2 × 106) of D. solani and P. atrosepticum cells lost viability. We attributed the antibacterial properties of PAL to the presence of deeply penetrating, reactive oxygen and nitrogen species (RONS), which were, in this case, OH, O, O3, H2O2, HO2, NH, N2, N2+, NO2-, NO3-, and NH4+. Putatively, the generated low-cost, eco-friendly, easy-to-store, and transport PAL, exhibiting the required antibacterial and physicochemical properties, may find numerous applications in the plant protection sector.


Asunto(s)
Antibacterianos/farmacología , Flores/crecimiento & desarrollo , Pectobacterium/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Agricultura , Antibacterianos/química , Presión Atmosférica , Líquidos Corporales/química , Flores/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Nitratos/farmacología , Pectobacterium/crecimiento & desarrollo , Pectobacterium/efectos de la radiación , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/química
10.
Artículo en Inglés | MEDLINE | ID: mdl-34068828

RESUMEN

Pectinolytic bacteria from the genus Pectobacterium cause high economic losses in various crops, vegetables, and ornamentals including potato. Thus far, these strains have been isolated from distinct environments such as rotten or asymptomatic plants, soil, and waterways. The prevalence of soft rot Pectobacteriaceae in different depths of Pomeranian lakes was performed by a qualified scuba diver over 2 years of monitoring. It allowed for the isolation and broad characterization of a strain from the newly established species Pectobacterium aquaticum. Phylogenetic analysis on the sequences of dnaX and recA genes revealed the highest similarity of this strain to P. aquaticum CFBP 8637T. In addition to the determination of analytical profile index (API 20E), we discovered that this strain possesses a smooth form of a lipopolysaccharide with O-polysaccharide consisting of mannose, glucose, and abequose. Moreover, the characterized strain, described as P. aquaticum IFB5637, produced plant-cell-wall-degrading enzymes, such as pectinases, cellulases, proteases, and was capable of macerating potato and chicory tissues under laboratory conditions. In view of more frequent irrigation of seed potato fields resulting from the ongoing climate warming, it is important to monitor the occurrence of potential disease-causing agents in natural waterways.


Asunto(s)
Lagos , Pectobacterium , Pectobacterium/genética , Filogenia , Enfermedades de las Plantas , Polonia
11.
Methods Mol Biol ; 2242: 3-14, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33961214

RESUMEN

Acquisition of high-quality bacterial genomes is fundamental, while having in mind investigation of subtitle intraspecies variation in addition to development of sensitive species-specific tools for detection and identification of the pathogens. In this view, Pacific Biosciences technology seems highly tempting taking into consideration over 10,000 bp length of the generated reads. In this work, we describe a bacterial genome assembly pipeline based on open-source software that might be handled also by non-bioinformaticians interested in transformation of sequencing data into reliable biological information. With the use of this method, we successfully closed six Dickeya solani genomes, while the assembly process was run just on a slightly improved desktop computer.


Asunto(s)
ADN Bacteriano/genética , Dickeya/genética , Genoma Bacteriano , Genómica , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Proyectos de Investigación , Imagen Individual de Molécula , Secuenciación Completa del Genoma , Flujo de Trabajo
12.
Methods Mol Biol ; 2242: 91-112, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33961220

RESUMEN

High availability of fast, cheap, and high-throughput next generation sequencing techniques resulted in acquisition of numerous de novo sequenced and assembled bacterial genomes. It rapidly became clear that digging out useful biological information from such a huge amount of data presents a considerable challenge. In this chapter we share our experience with utilization of several handy open source comparative genomic tools. All of them were applied in the studies focused on revealing inter- and intraspecies variation in pectinolytic plant pathogenic bacteria classified to Dickeya solani and Pectobacterium parmentieri. As the described software performed well on the species within the Pectobacteriaceae family, it presumably may be readily utilized on some closely related taxa from the Enterobacteriaceae family. First of all, implementation of various annotation software is discussed and compared. Then, tools computing whole genome comparisons including generation of circular juxtapositions of multiple sequences, revealing the order of synteny blocks or calculation of ANI or Tetra values are presented. Besides, web servers intended either for functional annotation of the genes of interest or for detection of genomic islands, plasmids, prophages, CRISPR/Cas are described. Last but not least, utilization of the software designed for pangenome studies and the further downstream analyses is explained. The presented work not only summarizes broad possibilities assured by the comparative genomic approach but also provides a user-friendly guide that might be easily followed by nonbioinformaticians interested in undertaking similar studies.


Asunto(s)
ADN Bacteriano/genética , Dickeya/genética , Genoma Bacteriano , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Pectobacterium/genética , Análisis de Secuencia de ADN , Bases de Datos Genéticas , Proyectos de Investigación , Diseño de Software , Flujo de Trabajo
13.
Sci Rep ; 10(1): 21166, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273520

RESUMEN

We present an optimized non-thermal atmospheric plasma (NTAP)-based reaction-discharge system that was applied for a continuous-flow treatment of apple juice (AJ). To optimize this system for a high-throughput production of AJ with ameliorated properties, the effect of several parameters was studied using design of experiments approach followed by the response surface methodology. Additionally, nutritional, physicochemical, microbiological and cytotoxic properties of resulting AJ were assessed. It was established that NTAP treatment of AJ led to rise in concentration of Ca, Fe, K, Mg, Na and Sr by 8-10% as well as Al, B, Ba, Cu, Mn and Zn by 11-15%. Additionally, the increased total phenolic content by ~ 11% in addition to the prolonged by up to 12 days shelf life of the product were observed. Moreover, it was found that the NTAP-treatment of AJ did not change the structure of organic compounds present in AJ, in addition to its °Brix value, color and ferric ion reducing antioxidant power. Furthermore, AJ subjected to NTAP did not show any cytotoxic activity towards non-malignant human intestinal epithelial cells but exhibited induced cell cytotoxicity in human colorectal adenocarcinoma cells. Our study provided arguments for future introduction of these types of preparations to the global market.

14.
Carbohydr Res ; 497: 108135, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32911204

RESUMEN

The species Dickeya aquatica was established in 2014 after the genomic characterization of the pectinolytic bacteria isolated from water. It was demonstrated that D. aquatica was able to cause symptoms of soft rot on the fruit of tomato and cucumber. According to earlier works, lipopolysaccharides are regarded as an important virulence factor of Pectobacteriaceae. An O-specific polysaccharide containing d-Fuc and l-Rha was obtained by mild acid hydrolysis of the lipopolysaccharide of D. aquatica IFB0154 (strain Dw044 isolated in Finland). By means of compositional analyses and NMR spectroscopy, the chemical repeating unit of the polymer was identified as a linear disaccharide of the structure shown below. The rhamnose residue was partially acetylated at O-2 or O-3. OAc (~40%) ↓2 →3)-α-d-Fucp-(1 â†’ 4)-α-l-Rhap-(1→ ↑3 OAc (~30%) The O-polysaccharides isolated from Dickeya dianthicola IFB0485 and Dickeya zeae IPO946 have a different structure, identical to that previously described for several strains of Dickeya solani and Dickeya dadantii 3937.


Asunto(s)
Dickeya/química , Antígenos O/química , Secuencia de Carbohidratos , Antígenos O/aislamiento & purificación , Especificidad de la Especie
15.
BMC Genomics ; 21(1): 449, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600255

RESUMEN

BACKGROUND: Dickeya solani is an important plant pathogenic bacterium causing severe losses in European potato production. This species draws a lot of attention due to its remarkable virulence, great devastating potential and easier spread in contrast to other Dickeya spp. In view of a high need for extensive studies on economically important soft rot Pectobacteriaceae, we performed a comparative genomics analysis on D. solani strains to search for genetic foundations that would explain the differences in the observed virulence levels within the D. solani population. RESULTS: High quality assemblies of 8 de novo sequenced D. solani genomes have been obtained. Whole-sequence comparison, ANIb, ANIm, Tetra and pangenome-oriented analyses performed on these genomes and the sequences of 14 additional strains revealed an exceptionally high level of homogeneity among the studied genetic material of D. solani strains. With the use of 22 genomes, the pangenome of D. solani, comprising 84.7% core, 7.2% accessory and 8.1% unique genes, has been almost completely determined, suggesting the presence of a nearly closed pangenome structure. Attribution of the genes included in the D. solani pangenome fractions to functional COG categories showed that higher percentages of accessory and unique pangenome parts in contrast to the core section are encountered in phage/mobile elements- and transcription- associated groups with the genome of RNS 05.1.2A strain having the most significant impact. Also, the first D. solani large-scale genome-wide phylogeny computed on concatenated core gene alignments is herein reported. CONCLUSIONS: The almost closed status of D. solani pangenome achieved in this work points to the fact that the unique gene pool of this species should no longer expand. Such a feature is characteristic of taxa whose representatives either occupy isolated ecological niches or lack efficient mechanisms for gene exchange and recombination, which seems rational concerning a strictly pathogenic species with clonal population structure. Finally, no obvious correlations between the geographical origin of D. solani strains and their phylogeny were found, which might reflect the specificity of the international seed potato market.


Asunto(s)
Dickeya/patogenicidad , Genómica/métodos , Solanum tuberosum/microbiología , Factores de Virulencia/genética , Dickeya/clasificación , Dickeya/genética , Tamaño del Genoma , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Secuenciación Completa del Genoma
16.
Front Microbiol ; 9: 1940, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233505

RESUMEN

Bacteria belonging to the genera Dickeya and Pectobacterium are responsible for significant economic losses in a wide variety of crops and ornamentals. During last years, increasing losses in potato production have been attributed to the appearance of Dickeya solani. The D. solani strains investigated so far share genetic homogeneity, although different virulence levels were observed among strains of various origins. The purpose of this study was to investigate the genetic traits possibly related to the diverse virulence levels by means of comparative genomics. First, we developed a new genome assembly pipeline which allowed us to complete the D. solani genomes. Four de novo sequenced and ten publicly available genomes were used to identify the structure of the D. solani pangenome, in which 74.8 and 25.2% of genes were grouped into the core and dispensable genome, respectively. For D. solani panregulon analysis, we performed a binding site prediction for four transcription factors, namely CRP, KdgR, PecS and Fur, to detect the regulons of these virulence regulators. Most of the D. solani potential virulence factors were predicted to belong to the accessory regulons of CRP, KdgR, and PecS. Thus, some differences in gene expression could exist between D. solani strains. The comparison between a highly and a low virulent strain, IFB0099 and IFB0223, respectively, disclosed only small differences between their genomes but significant differences in the production of virulence factors like pectinases, cellulases and proteases, and in their mobility. The D. solani strains also diverge in the number and size of prophages present in their genomes. Another relevant difference is the disruption of the adhesin gene fhaB2 in the highly virulent strain. Strain IFB0223, which has a complete adhesin gene, is less mobile and less aggressive than IFB0099. This suggests that in this case, mobility rather than adherence is needed in order to trigger disease symptoms. This study highlights the utility of comparative genomics in predicting D. solani traits involved in the aggressiveness of this emerging plant pathogen.

17.
Nanomaterials (Basel) ; 8(10)2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30248904

RESUMEN

Development of efficient plant protection methods against bacterial phytopathogens subjected to compulsory control procedures under international legislation is of the highest concern having in mind expensiveness of enforced quarantine measures and threat of the infection spread in disease-free regions. In this study, fructose-stabilized silver nanoparticles (FRU-AgNPs) were produced using direct current atmospheric pressure glow discharge (dc-APGD) generated between the surface of a flowing liquid anode (FLA) solution and a pin-type tungsten cathode in a continuous flow reaction-discharge system. Resultant spherical and stable in time FRU-AgNPs exhibited average sizes of 14.9 ± 7.9 nm and 15.7 ± 2.0 nm, as assessed by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. Energy dispersive X-ray spectroscopy (EDX) analysis revealed that the obtained nanomaterial was composed of Ag while selected area electron diffraction (SAED) indicated that FRU-AgNPs had the face-centered cubic crystalline structure. The fabricated FRU-AgNPs show antibacterial properties against Erwinia amylovora, Clavibacter michiganensis, Ralstonia solanacearum, Xanthomonas campestris pv. campestris and Dickeya solani strains with minimal inhibitory concentrations (MICs) of 1.64 to 13.1 mg L-1 and minimal bactericidal concentrations (MBCs) from 3.29 to 26.3 mg L-1. Application of FRU-AgNPs might increase the repertoire of available control procedures against most devastating phytopathogens and as a result successfully limit their agricultural impact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...