Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Biol Sci ; 20(6): 1978-1991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617536

RESUMEN

Loss of PTEN tumor suppressor is an important event during colorectal cancer (CRC) development and is a target for therapeutic exploitation. This study reports that bromodomain and extra-terminal motif (BET) is a synthetic lethal partner of PTEN in CRC. BET inhibition (BETi) selectively induced G1 cell cycle arrest and apoptosis in PTEN-/- CRC. Further, BETi selectively and dose-dependently suppressed the growth of PTEN-/- CRC tumor xenografts in mice and patient-derived organoids. Mechanistically, PTEN-deficient CRC cells elevated the level of cytoplasmic p21CIP1/WAF1 that is hyper-phosphorylated at Thr145 by AKT. BETi suppressed AKT activation in PTEN-deficient CRC cells, followed by the reduction in p21 phosphorylation at Thr145, thereby promoting its nuclear translocation. In addition, BETi suppressed MYC level and this in turn increased the total p21 level in the nuclei. Over-expression of a phospho-mimetic p21 mutant (T145D) significantly rescued the BETi effect on PTEN-deficient CRC. These results suggest that BETi has a dual action on p21: elevating the level of p21 by inhibiting MYC and converting the oncogenic (cytoplasmic) p21 into the tumor-suppressive (nuclear) p21 by inhibiting AKT. Taken together, this study identified the synthetic lethal interaction between PTEN and BET, and provides a potential actionable target for CRC with PTEN loss.


Asunto(s)
Neoplasias Colorrectales , Mutaciones Letales Sintéticas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt , Fosforilación , Citoplasma , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Fosfohidrolasa PTEN/genética
2.
Int J Biol Sci ; 19(13): 4020-4035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705743

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer where no effective therapy has been developed. Here, we report that the natural product ER translocon inhibitor ipomoeassin F is a selective inhibitor of TNBC cell growth. A proteomic analysis of TNBC cells revealed that ipomoeassin F significantly reduced the levels of ER molecular chaperones, including PDIA6 and PDIA4, and induced ER stress, unfolded protein response (UPR) and autophagy in TNBC cells. Mechanistically, ipomoeassin F, as an inhibitor of Sec61α-containing ER translocon, blocks ER translocation of PDIA6, inducing its proteasomal degradation. Silencing of PDIA6 or PDIA4 by RNA interferences or treatment with a small molecule inhibitor of the protein disulfide isomerases in TNBC cells successfully recapitulated the ipomoeassin F phenotypes, including the induction of ER stress, UPR and autophagy, suggesting that the reduction of PDIAs is the key mediator of the pharmacological effects of ipomoeassin F. Moreover, ipomoeassin F significantly suppressed TNBC growth in a mouse tumor xenograft model, with a marked reduction in PDIA6 and PDIA4 levels in the tumor samples. Our study demonstrates that Sec61α-containing ER translocon and PDIAs are potential drug targets for TNBC and suggests that ipomoeassin F could serve as a lead for developing ER translocon-targeted therapy for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteómica , Glicoconjugados , Modelos Animales de Enfermedad , Chaperonas Moleculares
3.
Int J Biol Sci ; 19(11): 3544-3557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496993

RESUMEN

Colorectal cancer (CRC) driven by PTEN deficiency exhibits high risk of metastasis, advancement of tumor stages and chemotherapy resistance, where no effective therapy has been developed. In this study, we performed a synthetic lethal drug screening in CRC and found that PTEN-deficient CRC cells are highly vulnerable to MDM2 inhibition. MDM2 inhibitor treatment or its silencing selectively inhibited the growth of PTEN-deficient CRC in vitro and in mice models. Mechanistically, PTEN loss increased the level of active AKT and subsequently increased MDM2 phosphorylation, thereby limiting the p53 functions in PTEN-/- CRC cells. MDM2 inhibition in turn activated p53 in CRC, particularly in PTEN-/- CRC cells. The synthetic lethal effect of MDM2 inhibitor was largely dependent on p53, because p53 silenced cells or cells lacking p53 failed to exhibit synthetic lethality in PTEN-deficient cells. We further showed that MDM2 inhibition led to the p53-dependent reversal of Bcl2-Bax ratio, which contributed to mitochondria-mediated apoptotic cell death in PTEN-deficient CRC. This study suggests that pharmacological targeting of MDM2 could be a potential therapeutic strategy for PTEN-deficient CRC.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Animales , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Oncogene ; 41(19): 2734-2748, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35393542

RESUMEN

SMAD4 loss-of-function mutations have been frequently observed in colorectal cancer (CRC) and are recognized as a drug target for therapeutic exploitation. In this study, we performed a synthetic lethal drug screening with SMAD4-isogenic CRC cells and found that aurora kinase A (AURKA) inhibition is synthetic lethal with SMAD4 loss. Inhibition of AURKA selectively inhibited the growth of SMAD4-/- CRC in vitro and in vivo. Mechanistically, SMAD4 negatively regulated AURKA level, resulting in the significant elevation of AURKA in SMAD4-/- CRC cells. Inhibition of AURKA induced G2/M cell cycle delay in SMAD4+/+ CRC cells, but induced apoptosis in SMAD4-/- CRC cells. We further observed that a high level of AURKA in SMAD4-/- CRC cells led to abnormal mitotic spindles, leading to cellular aneuploidy. Moreover, SMAD4-/- CRC cells expressed high levels of spindle assembly checkpoint (SAC) proteins, suggesting the hyperactivation of SAC. The silencing of key SAC proteins significantly rescued the AURKA inhibition-induced cell death in SMAD4-/- cells, suggesting that SMAD4-/- CRC cells are hyper-dependent on AURKA activity for mitotic exit and survival during SAC hyperactivation. This study presents a unique synthetic lethal interaction between SMAD4 and AURKA and suggests that AURKA could be a potential drug target in SMAD4-deficient CRC.


Asunto(s)
Aurora Quinasa A , Neoplasias Colorrectales , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Puntos de Control del Ciclo Celular/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Humanos , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteína Smad4/genética , Proteína Smad4/metabolismo , Mutaciones Letales Sintéticas
5.
J Antibiot (Tokyo) ; 74(10): 677-686, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34163025

RESUMEN

Precision cancer medicine is a tailored treatment approach for individual cancer patients with different genomic characteristics. Mutated or hyperactive oncogenes have served as main drug targets in current precision cancer medicine, while defective or inactivated tumor suppressors in general have not been considered as druggable targets. Synthetic lethality is one of very few approaches that enable to target defective tumor suppressors with pharmacological agents. Synthetic lethality exploits cancer cell dependency on a protein or pathway, which arises when the function of a tumor suppressor is defective. This approach has been proven to be effective in clinical settings since the successful clinical introduction of BRCA-PARP synthetic lethality for the treatment of breast and ovarian cancer with defective BRCA. Subsequently, large-scale screenings with RNAi, CRISPR/Cas9-sgRNAs, and chemical libraries have been applied to identify synthetic lethal partners of tumor suppressors. Natural products are an important source for the discovery of pharmacologically active small molecules. However, little effort has been made in the discovery of synthetic lethal small molecules from natural products. This review introduces recent advances in the discovery of natural products targeting cancer cell dependency and discusses potentials of natural products in the precision cancer medicine.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Productos Biológicos/química , Humanos
6.
Exp Mol Med ; 53(5): 835-847, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34050264

RESUMEN

Recent advances in high-throughput sequencing technologies and data science have facilitated the development of precision medicine to treat cancer patients. Synthetic lethality is one of the core methodologies employed in precision cancer medicine. Synthetic lethality describes the phenomenon of the interplay between two genes in which deficiency of a single gene does not abolish cell viability but combined deficiency of two genes leads to cell death. In cancer treatment, synthetic lethality is leveraged to exploit the dependency of cancer cells on a pathway that is essential for cell survival when a tumor suppressor is mutated. This approach enables pharmacological targeting of mutant tumor suppressors that are theoretically undruggable. Successful clinical introduction of BRCA-PARP synthetic lethality in cancer treatment led to additional discoveries of novel synthetic lethal partners of other tumor suppressors, including p53, PTEN, and RB1, using high-throughput screening. Recent work has highlighted aurora kinase A (AURKA) as a synthetic lethal partner of multiple tumor suppressors. AURKA is a serine/threonine kinase involved in a number of central biological processes, such as the G2/M transition, mitotic spindle assembly, and DNA replication. This review introduces synthetic lethal interactions between AURKA and its tumor suppressor partners and discusses the potential of AURKA inhibitors in precision cancer medicine.


Asunto(s)
Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Biomarcadores de Tumor , Neoplasias/etiología , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Mutaciones Letales Sintéticas , Animales , Ensayos Clínicos como Asunto , Susceptibilidad a Enfermedades , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Medicina de Precisión , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
7.
Oncogene ; 40(5): 937-950, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33293694

RESUMEN

The tumor suppressor SMAD4 is frequently mutated in colorectal cancer (CRC). However, no effective targeted therapies exist for CRC with SMAD4 loss. Here, we employed a synthetic lethality drug screening in isogenic SMAD4+/+ and SMAD4-/- HCT116 CRC cells and found that bromodomain and extra-terminal motif (BET) inhibitors, as selective drugs for the growth of SMAD4-/- HCT116 cells. BET inhibition selectively induced G1 cell cycle arrest in SMAD4-/- cells and this effect was accompanied by the reprogramming of the MYC-p21 axis. Mechanistically, SMAD4 is a transcription repressor of MYC, and MYC in turn represses p21 transcription. SMAD4-/- cells lost MYC repression ability, thereby causing the cells addicted to the MYC oncogenic signaling. BET inhibition significantly reduced MYC level and restored p21 expression in SMAD4-/- cells, inducing the selective growth arrest. The ectopic overexpression of MYC or the silencing of p21 could rescue the BET inhibitor-induced growth arrest in SMAD4-/- cells, verifying this model. Tumor xenograft mouse experiments further demonstrated the synthetic lethality interaction between BET and SMAD4 in vivo. Taken together, our data suggest that BET could be a potential drug target for the treatment of SMAD4-deficient CRC.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteína Smad4/genética , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células HCT116 , Humanos , Ratones , Proteínas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Mutaciones Letales Sintéticas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Nat Commun ; 11(1): 5105, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037191

RESUMEN

RB1 mutational inactivation is a cancer driver in various types of cancer including lung cancer, making it an important target for therapeutic exploitation. We performed chemical and genetic vulnerability screens in RB1-isogenic lung cancer pair and herein report that aurora kinase A (AURKA) inhibition is synthetic lethal in RB1-deficient lung cancer. Mechanistically, RB1-/- cells show unbalanced microtubule dynamics through E2F-mediated upregulation of the microtubule destabilizer stathmin and are hypersensitive to agents targeting microtubule stability. Inhibition of AURKA activity activates stathmin function via reduced phosphorylation and facilitates microtubule destabilization in RB1-/- cells, heavily impacting the bipolar spindle formation and inducing mitotic cell death selectively in RB1-/- cells. This study shows that stathmin-mediated disruption of microtubule dynamics is critical to induce synthetic lethality in RB1-deficient cancer and suggests that upstream factors regulating microtubule dynamics, such as AURKA, can be potential therapeutic targets in RB1-deficient cancer.


Asunto(s)
Aurora Quinasa A/genética , Neoplasias Pulmonares/genética , Microtúbulos/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Estatmina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Desnudos , Microtúbulos/genética , Pirazoles/farmacología , Pirimidinas/farmacología , Proteínas de Unión a Retinoblastoma/metabolismo , Estatmina/genética , Mutaciones Letales Sintéticas , Ubiquitina-Proteína Ligasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Int J Biol Sci ; 16(11): 1774-1784, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32398948

RESUMEN

PTEN, a tumor suppressor, is found loss of function in many cancers, including colorectal cancer. To identify the synthetic lethal compounds working with PTEN deficiency, we performed a synthetic lethality drug screening with PTEN-isogenic colorectal cancer cells. From the screening, we found that PTEN-/- colorectal cancer cells were sensitive to anacardic acid, a p300/CBP histone acetyltransferase (HAT) inhibitor. Anacardic acid significantly reduced the viability of PTEN-/- cells not in PTEN+/+ cells via inducing apoptosis. Inhibition of HAT activity of p300/CBP by anacardic acid reduced the acetylation of histones at the promoter region and inhibited the transcription of Hsp70 family of proteins. The down-regulation of Hsp70 family proteins led to the reduction of AKT-Hsp70 complex formation, AKT destabilization and decreased the level of phosphorylated AKT at Ser473, all of which are vital for the survival of PTEN-/- colorectal cells. The synthetic lethality effect of anacardic acid was further validated in tumor xenograft mice models, where PTEN-/- colorectal tumors showed greater sensitivity to anacardic acid treatment than PTEN+/+ tumors. These data suggest that anacardic acid induced synthetic lethality by inhibiting HAT activity of p300/CBP, thereby reducing Hsp70 transcription and destabilizing AKT in PTEN deficient colorectal cancer cells.


Asunto(s)
Ácidos Anacárdicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Fosfohidrolasa PTEN/deficiencia , Proteínas Proto-Oncogénicas c-akt , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Ácidos Anacárdicos/química , Ácidos Anacárdicos/farmacología , Animales , Neoplasias Colorrectales/patología , Técnicas Químicas Combinatorias , Regulación hacia Abajo , Diseño de Fármacos , Descubrimiento de Drogas , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Neoplasias Experimentales , Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Mutaciones Letales Sintéticas , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA