Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 151(Pt 12): 3979-3987, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16339942

RESUMEN

In Salmonella enterica, PhoP is the response regulator of the PhoP/PhoQ two-component regulatory system that controls the expression of various virulence factors in response to external Mg2+. Previous studies have shown that phosphorylation of a PhoP variant with a C-terminal His tag (PhoP(His)) enhances dimerization and binding to target DNA. Here, the effect of phosphorylation on the oligomerization and DNA binding properties of both wild-type PhoP (PhoP) and PhoP(His) are compared. Gel filtration chromatography showed that PhoP exists as a mixture of monomer and dimer regardless of its phosphorylation state. In contrast, unphosphorylated PhoP(His) was mostly monomeric, whereas PhoP(His) approximately P existed as a mixture of monomer and dimer. By monitoring the tryptophan fluorescence of the proteins and the fluorescence of the probe 1-anilinonaphthalene-8-sulfonic acid bound to them, it was found that PhoP and PhoP(His) exhibited different spectral properties. The interaction between PhoP or PhoP(His) and the PhoP box of the mgtA promoter was monitored by surface plasmon resonance. Binding of PhoP to the PhoP box was barely influenced by phosphorylation. In contrast, phosphorylation of PhoP(His) clearly increased the interaction of PhoP(His) with target DNA. Altogether, these data show that a His tag at the C-terminus of PhoP affects its biochemical properties, most likely by affecting its conformation and/or its oligomerization state. More importantly, these results show that wild-type PhoP dimerization and interaction with target DNA are independent of phosphorylation, which is in contrast to the previously proposed model.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfatos/metabolismo , Salmonella enterica/metabolismo , Transducción de Señal , Sitios de Unión , Dimerización , Fosforilación
2.
Microbiology (Reading) ; 151(Pt 4): 1159-1167, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15817783

RESUMEN

Genes encoding eukaryotic-type protein kinases and phosphatases are present in many bacterial genomes. An ORF encoding a polypeptide with homology to protein phosphatases 2C (PP2Cs) was identified in the genomes of Salmonella enterica serovar Typhi strains CT18 and Ty2. This protein, termed PrpZ, is the first PP2C to be identified in enterobacteria. Analysis of the amino acid sequence revealed two distinct domains: the N-terminal segment containing motifs of the catalytic domain of PP2Cs and the C-terminal segment with unknown function. PrpZ was expressed in Escherichia coli as a histidine-tagged fusion protein (PrpZ(His)) and the purified protein was analysed for its ability to dephosphorylate various substrates. Using p-nitrophenyl phosphate as a substrate, optimal PrpZ(His) activity was observed at pH 9.5, with a strong preference for Mn(2+) over Mg(2+). Activity of PrpZ(His) was inhibited by EDTA, sodium fluoride, sodium phosphate and sodium pyrophosphate but unaffected by okadaic acid, indicating that PrpZ is a PP2C. Using synthetic phosphopeptides as substrates, PrpZ(His) could hydrolyse phosphorylated serine, threonine or tyrosine residues, with the highest catalytic efficiency (k(cat)/K(m)) for the threonine phosphopeptide. With phosphorylated myelin basic protein (MBP) as the substrate, Mn(2+) was only twofold more efficient than Mg(2+) in stimulating PrpZ(His) activity at pH 8.0. The ability of PrpZ(His) to remove the phosphoryl group from phosphotyrosine residues was confirmed by measuring the release of inorganic phosphate from phospho-Tyr MBP. Together, these data indicate that PrpZ has all the features of a PP2C with dual substrate specificity in vitro.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Salmonella typhi/enzimología , Secuencia de Bases , Clonación Molecular , ADN Bacteriano/genética , Genes Bacterianos , Cinética , Nitrofenoles/metabolismo , Sistemas de Lectura Abierta , Compuestos Organofosforados/metabolismo , Fosfopéptidos/metabolismo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 2C , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Salmonella typhi/genética , Especificidad por Sustrato
3.
J Bacteriol ; 185(6): 1935-41, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12618457

RESUMEN

The PhoP/PhoQ two-component regulatory system of Salmonella enterica serovar Typhimurium plays an essential role in controlling virulence by mediating the adaptation to Mg(2+) depletion. The pho-24 allele of phoQ harbors a single amino acid substitution (T48I) in the periplasmic domain of the PhoQ histidine kinase sensor. This mutation has been shown to increase net phosphorylation of the PhoP response regulator. We analyzed the effect on signaling by PhoP/PhoQ of various amino acid substitutions at this position (PhoQ-T48X [X = A, S, V, I, or L]). Mutations T48V, T48I, and T48L were found to affect signaling by PhoP/PhoQ both in vivo and in vitro. Mutations PhoQ-T48V and PhoQ-T48I increased both the expression of the mgtA::lacZ transcriptional fusion and the net phosphorylation of PhoP, conferring to cells a PhoP constitutively active phenotype. In contrast, mutation PhoQ-T48L barely responded to changes in the concentration of external Mg(2+), in vivo and in vitro, conferring to cells a PhoP constitutively inactive phenotype. By analyzing in vitro the individual catalytic activities of the PhoQ-T48X sensors, we found that the PhoP constitutively active phenotype observed for the PhoQ-T48V and PhoQ-T48I proteins is solely due to decreased phosphatase activity. In contrast, the PhoP constitutively inactive phenotype observed for the PhoQ-T48L mutant resulted from both decreased autokinase activity and increased phosphatase activity. Our data are consistent with a model in which the residue at position 48 of PhoQ contributes to a conformational switch between kinase- and phosphatase-dominant states.


Asunto(s)
Sustitución de Aminoácidos , Proteínas Bacterianas/química , Regulación Bacteriana de la Expresión Génica , Proteínas Quinasas/química , Salmonella typhimurium/enzimología , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Histidina Quinasa , Magnesio/metabolismo , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Salmonella typhimurium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...