Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 278(Pt 2): 134828, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159800

RESUMEN

Recently, Cellulose microfibers (CMF) have garnered significant attention due to their renewability, biodegradability, and unique properties such as high aspect ratio, low density, high strength, stiffness, and distinctive optical properties. These characteristics have been highlighted in publications worldwide. However, the structure of CMF is difficult to access with solvents, limiting its dissolution in common organic solvents. The synthesis of CMF-siloxane or CMF-silane hybrid materials from cellulose generally involves several reactions steps, and therefore catalysts. The allylation of CMF is catalyzed by the phase-transfer catalyst tetrabutylammonium bromide (TBAB), which enables the combination of CMF with allyl. This is followed by a hydrosilylation reaction catalyzed by Karstedt's catalyst, based on platinum (0), to combine the hydrophilic allylated CMF with hydride-terminated hydrophobic hydrosilane or hydrosiloxane. Environmentally friendly particleboards were developed using bio-based adhesives composed of corn-starch and Mimosa tannin (CSMT) mixtures. These mixtures included 4, 6, 8, and 10 wt% of CMF, allylated CMF and silylated CMF. The mechanical and physical properties of particleboards, such as modulus of elasticity (MOE), modulus of rupture (MOR), internal bond strength (IB), surface soundness (SS), water absorption (WA) and thickness swelling (TS) were determined.

2.
J Microencapsul ; : 1-19, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185665

RESUMEN

This study investigates the synergistic effects of alginate@montmorillonite (Alg@Mt) hybrid microcapsules for enhancing water purification, focusing on improving the encapsulation of hydrophobic contaminants. Alg@Mt microcapsules were prepared through ionotropic gelation. Characterisation was performed using SEM-EDX, FTIR, XRD, and TGA. Encapsulation efficiency (EE), loading capacity (LC), and release behaviour were also examined. Alg@Mt microcapsules effectively removed phenol and its chlorinated derivatives from water. Incorporating Na-Mt improved structural and thermal properties, EE, and LC. Increasing the clay content to 60% (w/w) raised the EE of phenol and its more hydrophobic derivative, 2,4,6-trichlorophenol, from 39.74 ± 3.1% (w/w) and 63.91 ± 2% (w/w) to 60.56 ± 1.6% (w/w) and 82.28 ± 2.3% (w/w), respectively, with more controlled release rates, following Fickian diffusion mechanism. EE increased with phenolic substances hydrophobicity, while LC and release rates were inversely related. This approach is promising for removing hydrophobic contaminants from water.

3.
Biomacromolecules ; 25(8): 4843-4855, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985577

RESUMEN

Tannin, after lignin, is one of the most abundant sources of natural aromatic biomolecules. It has been used and chemically modified during the past few decades to create novel biobased materials. This work intended to functionalize for the first time quebracho Tannin (T) through a simple phosphorylation process in a urea system. The phosphorylation of tannin was studied by Fourier transform infrared spectroscopy (FTIR), NMR, inductively coupled plasma optical emission spectroscopy (ICP-OES), and X-ray fluorescence spectrometry (XRF), while further characterization was performed by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and thermogravimetric analysis (TGA) to investigate the morphology, composition, structure, and thermal degradation of the phosphorylated material. Results indicated the occurrence of phosphorylation, suggesting the insertion of phosphate-containing groups into the tannin structure, revealing a high content of phosphate for modified tannin (PT). This elevated phosphorus content serves as evidence for the successful incorporation of phosphate groups through the functionalization process. The corresponding PT and T were employed as adsorbents for methylene blue (MB) removal from aqueous solutions. The results revealed that the Langmuir isotherm model effectively represents the adsorption isotherms. Additionally, the pseudo-second-order model indicates that chemisorption predominantly controls the adsorption mechanism. This finding also supports the fact that the introduced phosphate groups via the phosphorylation process significantly contributed to the improved adsorption capacity. Under neutral pH conditions and at room temperature, the material achieved an impressive adsorption capacity of 339.26 mg·g-1 in about 2 h.


Asunto(s)
Azul de Metileno , Taninos , Urea , Azul de Metileno/química , Azul de Metileno/aislamiento & purificación , Taninos/química , Urea/química , Fosforilación , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
4.
Int J Biol Macromol ; 268(Pt 2): 131855, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679259

RESUMEN

In this work, chitin (CT) was isolated from shrimp shell waste (SSW) and was then phosphorylated using diammonium hydrogen phosphate (DAP) as a phosphorylating agent in the presence of urea. The prepared samples were characterized using Scanning Electron Microscopy (SEM) and EDX-element mapping, Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA/DTG), conductometric titration, Degree of Substitution (DS) and contact angle measurements. The results of characterization techniques reveal the successful extraction and phosphorylation of chitin. The charge content of the phosphorylated chitin (P-CT) was 1.510 mmol·kg-1, the degree of substitution of phosphorus groups grafted on the CT surface achieved the value of 0.33. The adsorption mechanisms appeared to involve electrostatic attachment, specific adsorption (CdO or hydroxyl binding), and ion exchange. Regarding the adsorption of Cd2+, the effect of the adsorbent mass, initial concentration of Cd2+, contact time, pH, and temperature were studied in batch experiments, and optimum values for each parameter were identified. The experimental results revealed that P-CT enhanced the Cd2+ removal capacity by 17.5 %. The kinetic analyses favored the pseudo-second-order model over the pseudo-first-order model for describing the adsorption process accurately. Langmuir model aptly represented the adsorption isotherms, suggesting unimolecular layer adsorption with a maximum capacity of 62.71 mg·g-1 under optimal conditions of 30 °C, 120 min, pH 8, and a P-CT dose of 3 g·L-1. Regeneration experiments evidenced that P-CT can be used for 6 cycles without significant removal capacity loss. Consequently, P-CT presents an efficient and cost-effective potential biosorbent for Cd2+ removal in wastewater treatment applications.


Asunto(s)
Cadmio , Quitina , Quitina/química , Quitina/aislamiento & purificación , Cadmio/química , Cadmio/aislamiento & purificación , Animales , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Exoesqueleto/química , Fosforilación , Concentración de Iones de Hidrógeno , Cinética , Temperatura , Purificación del Agua/métodos , Residuos , Espectroscopía Infrarroja por Transformada de Fourier
5.
Chemosphere ; 350: 141098, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171398

RESUMEN

To fulfill the unprecedented valorization approaches for lignocellulose, this work focuses on the potential of lignin-derived catalytic systems for bio-remediation, which are natural materials perceived to address the increased demand for eco-conscious catalyzed processes. A useful lignin-functionalized cobalt (Lig-Co) catalyst has been prepared, well-characterized and deployed for the catalyzed reducing decomposition of stable harmful organic pollutants such as methylene blue (MB) and methyl orange (MO), in simple and binary systems. The multifunctional character of lignin and the presence of various active sites can promote effectively loaded metal nanoparticles (NPs). Considerably, optimizing detoxification tests showed that the uncatalyzed use of NaBH4 as a reductive agent led to an incomplete reduction of organic contaminants over a long period of up to 65 min. Interestingly, Lig-Co catalyst exhibited a high reduction rate and turnover frequency of up to 99.23% and 24.12 min-1 for MB, respectively, while they reached 99.25% and 26.21 min-1 for MO at normal temperature. Kinetically quick catalytic reaction was also demonstrated for the hybrid system, in which the rate constant k was 0.175 s-1 and 0.165 s-1 for MB and MO, respectively, within a distinctly low reaction time of around 120 s. The reproducibility of the Lig-Co catalyst induces a desirable capacity to reduce stable dyes present simultaneously in the binary system, with 6 successive catalytic runs and over 80% of activity retained. Such robust findings underline the considerable interest in developing future lignin-mediated catalytic transformations and upscaling biomass-derived products, to meet the growing demand for sustainable and eco-friendly alternatives in various industries.


Asunto(s)
Compuestos Azo , Cobalto , Lignina , Lignina/química , Cobalto/química , Reproducibilidad de los Resultados , Colorantes/química , Catálisis
6.
Environ Pollut ; 335: 122349, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37562526

RESUMEN

The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Polímeros , Agua , Adsorción , Descontaminación , Contaminantes Químicos del Agua/química , Biopolímeros , Metales Pesados/química , Purificación del Agua/métodos
7.
Int J Biol Macromol ; 242(Pt 2): 125011, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37217042

RESUMEN

This study aims to investigate the mechanical behavior of alginate-based simple and alginate@clay-based hybrid capsules under uniaxial compression using a Brookfield force machine. The effect of clay type and content on Young's modulus and nominal rupture stress of the capsules was investigated and characterized using Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (ATR-FTIR). Results showed that clay content improves the mechanical properties depending on its type. Montmorillonite and laponite clays showed optimal results at 3 wt% content, with a gain of 63.2 % and 70.34 % on Young's modulus, and a gain of 92.43 % and 108.66 % on nominal rupture stress, respectively, while kaolinite clay showed optimal results at 1.5 wt% content with an increase of 77.21 % on Young's modulus and 88.34 % on nominal rupture stress. However, exceeding the optimal content led to decrease the elasticity and rigidity due to the incomplete dispersion of clay particles in the hydrogel network. The theoretical modeling using Boltzmann superposition principle revealed that the elastic modulus was in good agreement with experimental values. Overall, this research provides insights into the mechanical behavior of alginate@clay-based capsules, which could have potential applications in drug delivery systems and tissue engineering.


Asunto(s)
Alginatos , Fenómenos Mecánicos , Arcilla , Alginatos/química , Cápsulas , Elasticidad
8.
Int J Biol Macromol ; 239: 124288, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023876

RESUMEN

This work describes the preparation of new eco-friendly adsorbents with a simple method. Gel beads of coffee grounds cellulose (CGC) and sodium alginate (SA) were prepared for wastewater treatment. Upon their synthesis, the physicochemical properties, performances and efficiency were analyzed by means of various structural and morphological characterizations. Kinetic and thermodynamic adsorption approaches evaluated the removal capacity of these beads which reached equilibrium in 20 min for Methylene Blue (MB) and Congo Red (CR). Also, the kinetics shows that the results can be explained by the pseudo-second-order model (PSO). Furthermore, the isotherm assessments showed that Langmuir-Freundlich can fit the adsorption data of both contaminants. Accordingly, the maximum adsorption capacities reached by the Langmuir-Freundlich model are 400.50 and 411.45 mg/g for MB and CR, respectively. It is interesting to note that the bio-adsorption capabilities of MB and CR on bead hydrogels decreased with temperature. Besides, the results of the thermodynamic study evidenced that the bio-adsorption processes are favorable, spontaneous and exothermic. The CGC/SA gel beads are therefore outstanding bio-adsorbents, offering a great adsorptive performance and regenerative abilities.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Colorantes/química , Hidrogeles/química , Café , Adsorción , Alginatos/química , Celulosa/química , Rojo Congo/química , Cinética , Azul de Metileno/química , Cationes , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
9.
Int J Biol Macromol ; 230: 123242, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639085

RESUMEN

Catalytic systems derived from lignin are emerging as quite efficient and profitable materials in many catalyzed transformations. However, these catalysts have been predominantly synthesized by carbonization. Alternatively, we prepared direct sulfonation lignin (DSL) and compared it to the carbonized-sulfonated lignin (CSL) catalyst, aiming to reveal the effects of direct functionalization of lignin on its catalytic performance and to simplify its preparation. Both catalysts were well characterized by several physicochemical techniques, and their catalytic activities were assessed by catalyzed esterification. Using CSL, the yield reached 94.11 % under the optimal conditions (60 °C, 4 h and 50 mg loading), while DSL yielded 93.97 % with only 2 h under the same conditions, which is attributed to the abundant catalytic active sites in DSL (0.62 mmol/g of SO3H against 0.39 mmol/g for CSL). Furthermore, the activation energies were found to be 21 and 16 kJ mol-1 for CSL and DSL, respectively, suggesting that esterification can occur with less energy input using DSL. Reusability showed that leaching of SO3H groups and mass loss are inherently responsible for deactivation. However, both lignin-based catalysts show good stability and can be reused for 4 successive cycles. Direct lignin functionalization can be an alternative to conventional catalyst processing.


Asunto(s)
Lignina , Eliminación de Residuos , Lignina/química , Alimentos , Catálisis , Alcanosulfonatos , Ácidos
10.
Int J Biol Macromol ; 221: 149-162, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36058399

RESUMEN

The current study investigates for the first time the physico-chemical performances of lignins from cactus waste seeds (CWS) and spent coffee (SC) in comparison to previously isolated lignins from sugar byproducts (bagasse (SCB) and beet pulp (SBP)). In this work, lignin-phenol formaldehyde (LPF) resins were formulated using various lignin loadings (5-30 wt%), characterized and applied in the manufacturing of plywood panels. Several characterization techniques were applied to identify the chemical and morphological properties, thermal stability, and phenolic content of the extracted lignins, as well as the bonding strength and wood failure of the formulated resins. Results showed that the CWS and SC could be considered as an important source for lignin recovery with a considerable yield of 15.46 % and 27.08 % and an important hydroxyl phenolic content of 1.26 mmol/g and 1.36 mmol/g for CWS and SC, respectively. Interestingly, 20 wt% of extracted lignins in PF adhesives were the optimal formulation showing an improved modulus of elasticity (MOE) of about 3505, 3536 and 3515 N/mm2, and a higher modulus of rupture (MOR) of about 55, 55 and 56 N/mm2 for panels containing CWS, SC and SCB-lignins, respectively, over the reference panels (MOE = 3198 N/mm2 and MOR = 48 N/mm2). Additionally, formaldehyde emission from plywood remarkably decreases by up to 20 % when lignin was incorporated into the PF matrix. Herein, the treatment of the CWS and SC for the extraction of alkali lignin and its application showed a new route to produce high added-value products from underused residues.


Asunto(s)
Lignina , Madera , Lignina/química , Madera/química , Adhesivos/química , Fenol/química , Álcalis , Fenoles/química , Formaldehído/química
11.
J Anal Methods Chem ; 2022: 5348246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35140993

RESUMEN

During the present study, biopolymer lignin was extracted, in particular, from sugar beet pulp (molasses) from the Tadla region (224 km from Marrakech, Morocco). The lignin was characterized by infrared spectroscopy (FTIR) and thermogravimetric TG/DTA analysis and then used as a modifier to enhance the electroanalytical detection of heavy metal ion traces. The performance of the lignin/CPE sensor to detect lead (II) was studied by cyclic voltammetry (CV) and square-wave voltammetry in 0.3 mol L-1 NaCl. With optimized experimental parameters, the lignin/CPE sensor developed has a minimum detection limit of 2.252.10-11 M for Pb (II). The proposed working electrode has been successfully applied for the coanalysis of Pb (II) in tap water with good results.

12.
Int J Biol Macromol ; 203: 302-311, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104469

RESUMEN

Cactus fruit waste seeds (CWS) are a by-product of the cactus fruit processing industry. Until now, CWS are not recoverable in any sector. The valorization of these residues may reduce their volume in the environment and transform them into valuable products. In this work, CWS have been identified for the first time as a sustainable lignocellulosic source. Cellulose microfibers (CMFs) and nanocrystals (CNCs) were successfully produced via alkali and bleaching treatments followed by sulfuric acid hydrolysis. It was found that the extracted CMFs showed an average diameter of 11 µm, crystallinity of 72%, and a yield of 25%. The as-produced CNCs exhibited a needle-like shape with a diameter of 13 ± 3 nm and length of 419 ± 48 nm, giving rise to an aspect ratio of 30.7, with a zeta potential value of - 30 mV and a charge content of sulfate groups of 287.8 mmol·kg-1. Herein, the obtained cellulosic derivatives with excellent properties from this underutilized waste can draw the attention of researchers towards CWS as a new type of biomass with virtually no hemicellulose, which could be of great interest to isolate and study the effects of how lignin interacts with cellulose.


Asunto(s)
Cactaceae , Nanoestructuras , Celulosa/química , Frutas , Nanoestructuras/química , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...