Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 5(12)2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36260751

RESUMEN

DNA synthesis of the leading and lagging strands works independently and cells tolerate single-stranded DNA generated during strand uncoupling if it is protected by RPA molecules. Natural alkaloid emetine is used as a specific inhibitor of lagging strand synthesis, uncoupling leading and lagging strand replication. Here, by analysis of lagging strand synthesis inhibitors, we show that despite emetine completely inhibiting DNA replication: it does not induce the generation of single-stranded DNA and chromatin-bound RPA32 (CB-RPA32). In line with this, emetine does not activate the replication checkpoint nor DNA damage response. Emetine is also an inhibitor of proteosynthesis and ongoing proteosynthesis is essential for the accurate replication of DNA. Mechanistically, we demonstrate that the acute block of proteosynthesis by emetine temporally precedes its effects on DNA replication. Thus, our results are consistent with the hypothesis that emetine affects DNA replication by proteosynthesis inhibition. Emetine and mild POLA1 inhibition prevent S-phase poly(ADP-ribosyl)ation. Collectively, our study reveals that emetine is not a specific lagging strand synthesis inhibitor with implications for its use in molecular biology.


Asunto(s)
ADN de Cadena Simple , Emetina , Emetina/farmacología , ADN/genética , Replicación del ADN , Cromatina
2.
Cell Death Dis ; 13(3): 203, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246527

RESUMEN

Despite several approved therapeutic modalities, multiple myeloma (MM) remains an incurable blood malignancy and only a small fraction of patients achieves prolonged disease control. The common anti-MM treatment targets proteasome with specific inhibitors (PI). The resulting interference with protein degradation is particularly toxic to MM cells as they typically accumulate large amounts of toxic proteins. However, MM cells often acquire resistance to PIs through aberrant expression or mutations of proteasome subunits such as PSMB5, resulting in disease recurrence and further treatment failure. Here we propose CuET-a proteasome-like inhibitor agent that is spontaneously formed in-vivo and in-vitro from the approved alcohol-abuse drug disulfiram (DSF), as a readily available treatment effective against diverse resistant forms of MM. We show that CuET efficiently kills also resistant MM cells adapted to proliferate under exposure to common anti-myeloma drugs such as bortezomib and carfilzomib used as the first-line therapy, as well as to other experimental drugs targeting protein degradation upstream of the proteasome. Furthermore, CuET can overcome also the adaptation mechanism based on reduced proteasome load, another clinically relevant form of treatment resistance. Data obtained from experimental treatment-resistant cellular models of human MM are further corroborated using rather unique advanced cytotoxicity experiments on myeloma and normal blood cells obtained from fresh patient biopsies including newly diagnosed as well as relapsed and treatment-resistant MM. Overall our findings suggest that disulfiram repurposing particularly if combined with copper supplementation may offer a promising and readily available treatment option for patients suffering from relapsed and/or therapy-resistant multiple myeloma.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bortezomib/farmacología , Bortezomib/uso terapéutico , Línea Celular Tumoral , Disulfiram/farmacología , Reposicionamiento de Medicamentos , Resistencia a Antineoplásicos , Humanos , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico
3.
Cell Death Differ ; 29(3): 687-696, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34611297

RESUMEN

Ribosome biogenesis is an essential, energy demanding process whose deregulation has been implicated in cancer, aging, and neurodegeneration. Ribosome biogenesis is therefore under surveillance of pathways including the p53 tumor suppressor. Here, we first performed a high-content siRNA-based screen of 175 human ribosome biogenesis factors, searching for impact on p53. Knock-down of 4 and 35 of these proteins in U2OS cells reduced and increased p53 abundance, respectively, including p53 accumulation after depletion of BYSL, DDX56, and WDR75, the effects of which were validated in several models. Using complementary approaches including subcellular fractionation, we demonstrate that endogenous human WDR75 is a nucleolar protein and immunofluorescence analysis of ectopic GFP-tagged WDR75 shows relocation to nucleolar caps under chemically induced nucleolar stress, along with several canonical nucleolar proteins. Mechanistically, we show that WDR75 is required for pre-rRNA transcription, through supporting the maintenance of physiological levels of RPA194, a key subunit of the RNA polymerase I. Furthermore, WDR75 depletion activated the RPL5/RPL11-dependent p53 stabilization checkpoint, ultimately leading to impaired proliferation and cellular senescence. These findings reveal a crucial positive role of WDR75 in ribosome biogenesis and provide a resource of human ribosomal factors the malfunction of which affects p53.


Asunto(s)
Proteínas Ribosómicas , Proteína p53 Supresora de Tumor/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Precursores del ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/genética
4.
Aging (Albany NY) ; 11(8): 2512-2540, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31026227

RESUMEN

The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.


Asunto(s)
Envejecimiento/metabolismo , Neoplasias/metabolismo , Ribosomas/metabolismo , Animales , Humanos , Biogénesis de Organelos , Proteínas Ribosómicas/metabolismo
5.
Nature ; 559(7713): 279-284, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29950726

RESUMEN

Accurate replication of DNA requires stringent regulation to ensure genome integrity. In human cells, thousands of origins of replication are coordinately activated during S phase, and the velocity of replication forks is adjusted to fully replicate DNA in pace with the cell cycle1. Replication stress induces fork stalling and fuels genome instability2. The mechanistic basis of replication stress remains poorly understood despite its emerging role in promoting cancer2. Here we show that inhibition of poly(ADP-ribose) polymerase (PARP) increases the speed of fork elongation and does not cause fork stalling, which is in contrast to the accepted model in which inhibitors of PARP induce fork stalling and collapse3. Aberrant acceleration of fork progression by 40% above the normal velocity leads to DNA damage. Depletion of the treslin or MTBP proteins, which are involved in origin firing, also increases fork speed above the tolerated threshold, and induces the DNA damage response pathway. Mechanistically, we show that poly(ADP-ribosyl)ation (PARylation) and the PCNA interactor p21Cip1 (p21) are crucial modulators of fork progression. PARylation and p21 act as suppressors of fork speed in a coordinated regulatory network that is orchestrated by the PARP1 and p53 proteins. Moreover, at the fork level, PARylation acts as a sensor of replication stress. During PARP inhibition, DNA lesions that induce fork arrest and are normally resolved or repaired remain unrecognized by the replication machinery. Conceptually, our results show that accelerated replication fork progression represents a general mechanism that triggers replication stress and the DNA damage response. Our findings contribute to a better understanding of the mechanism of fork speed control, with implications for genomic (in)stability and rational cancer treatment.


Asunto(s)
Estructuras Cromosómicas , Daño del ADN , Replicación del ADN/fisiología , Inestabilidad Genómica , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Línea Celular Tumoral , Estructuras Cromosómicas/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Humanos , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismo
6.
Cell Cycle ; 17(1): 92-101, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29143558

RESUMEN

Ribosome biogenesis is an energy consuming process which takes place mainly in the nucleolus. By producing ribosomes to fuel protein synthesis, it is tightly connected with cell growth and cell cycle control. Perturbation of ribosome biogenesis leads to the activation of p53 tumor suppressor protein promoting processes like cell cycle arrest, apoptosis or senescence. This ribosome biogenesis stress pathway activates p53 through sequestration of MDM2 by a subset of ribosomal proteins (RPs), thereby stabilizing p53. Here, we identify human HEATR1, as a nucleolar protein which positively regulates ribosomal RNA (rRNA) synthesis. Downregulation of HEATR1 resulted in cell cycle arrest in a manner dependent on p53. Moreover, depletion of HEATR1 also caused disruption of nucleolar structure and activated the ribosomal biogenesis stress pathway - RPL5 / RPL11 dependent stabilization and activation of p53. These findings reveal an important role for HEATR1 in ribosome biogenesis and further support the concept that perturbation of ribosome biosynthesis results in p53-dependent cell cycle checkpoint activation, with implications for human pathologies including cancer.


Asunto(s)
Antígenos de Histocompatibilidad Menor/metabolismo , Biogénesis de Organelos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Polimerasa I/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Humanos , Proteínas Nucleares/metabolismo , ARN Ribosómico/biosíntesis , Transducción de Señal , Estrés Fisiológico
7.
Nature ; 552(7684): 194-199, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29211715

RESUMEN

Cancer incidence is rising and this global challenge is further exacerbated by tumour resistance to available medicines. A promising approach to meet the need for improved cancer treatment is drug repurposing. Here we highlight the potential for repurposing disulfiram (also known by the trade name Antabuse), an old alcohol-aversion drug that has been shown to be effective against diverse cancer types in preclinical studies. Our nationwide epidemiological study reveals that patients who continuously used disulfiram have a lower risk of death from cancer compared to those who stopped using the drug at their diagnosis. Moreover, we identify the ditiocarb-copper complex as the metabolite of disulfiram that is responsible for its anti-cancer effects, and provide methods to detect preferential accumulation of the complex in tumours and candidate biomarkers to analyse its effect on cells and tissues. Finally, our functional and biophysical analyses reveal the molecular target of disulfiram's tumour-suppressing effects as NPL4, an adaptor of p97 (also known as VCP) segregase, which is essential for the turnover of proteins involved in multiple regulatory and stress-response pathways in cells.


Asunto(s)
Disuasivos de Alcohol , Alcoholismo/tratamiento farmacológico , Antineoplásicos , Disulfiram/farmacología , Disulfiram/uso terapéutico , Reposicionamiento de Medicamentos , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Adulto , Disuasivos de Alcohol/farmacología , Disuasivos de Alcohol/uso terapéutico , Alcoholismo/epidemiología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cobre/química , Dinamarca/epidemiología , Disulfiram/química , Femenino , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Proteínas Nucleares/química , Agregado de Proteínas , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos
8.
J Proteomics ; 162: 73-85, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28478306

RESUMEN

Oxaliplatin is widely used to treat colorectal cancer in both palliative and adjuvant settings. It is also being tested for use in treating hematological, esophageal, biliary tract, pancreatic, gastric, and hepatocellular cancers. Despite its routine clinical use, little is known about the responses it induces in cancer cells. Therefore the whole-cell proteomics study was conducted to characterize the cellular response induced by oxaliplatin. Chemosensitive CCRF-CEM cells were treated with oxaliplatin at 29.3µM (5×IC50) for 240min (half-time to caspase activation). The proteomes of un-/treated cells were then compared by high-resolution mass spectrometry, revealing 4049 proteins expressed over 3 biological replicates. Among these proteins, 76 were significantly downregulated and 31 significantly upregulated in at least two replicates. In agreement with the DNA-damaging effects of platinum drugs, proteins involved in DNA damage responses were present in both the upregulated and downregulated groups. The downregulated proteins were divided into three subgroups; i) centrosomal proteins, ii) RNA processing and iii) ribosomal proteins, which indicates nucleolar and ribosomal stress. In conclusion, our data supported by further validation experiments indicate the initial cellular response to oxaliplatin is the activation of DNA damage response, which in turn or in parallel triggers nucleolar and ribosomal stress. BIOLOGICAL SIGNIFICANCE: We have performed a whole-cell proteomic study of cellular response to oxaliplatin treatment, which is the drug predominantly used in the treatment of colorectal cancer. Compared to its predecessors, cisplatin and carboplatin, there is only a small fraction of studies dedicated to oxaliplatin. From those studies, most of them are focused on modification of treatment regimens or study of oxaliplatin in new cancer diagnoses. Cellular response hasn't been studied deeply and to our best knowledge, this is the first whole-cell proteomics study focused exclusively to this important topic, which can help to understand molecular mechanisms of action.


Asunto(s)
Nucléolo Celular/efectos de los fármacos , Daño del ADN , Neoplasias/tratamiento farmacológico , Compuestos Organoplatinos/farmacología , Proteoma/efectos de los fármacos , Ribosomas/efectos de los fármacos , Antineoplásicos/farmacología , Perfilación de la Expresión Génica , Humanos , Neoplasias/patología , Oxaliplatino , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos , Estrés Fisiológico , Células Tumorales Cultivadas
9.
J Cell Biol ; 212(3): 281-8, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26811421

RESUMEN

Topoisomerase IIß-binding protein 1 (TOPBP1) participates in DNA replication and DNA damage response; however, its role in DNA repair and relevance for human cancer remain unclear. Here, through an unbiased small interfering RNA screen, we identified and validated TOPBP1 as a novel determinant whose loss sensitized human cells to olaparib, an inhibitor of poly(ADP-ribose) polymerase. We show that TOPBP1 acts in homologous recombination (HR) repair, impacts olaparib response, and exhibits aberrant patterns in subsets of human ovarian carcinomas. TOPBP1 depletion abrogated RAD51 loading to chromatin and formation of RAD51 foci, but without affecting the upstream HR steps of DNA end resection and RPA loading. Furthermore, TOPBP1 BRCT domains 7/8 are essential for RAD51 foci formation. Mechanistically, TOPBP1 physically binds PLK1 and promotes PLK1 kinase-mediated phosphorylation of RAD51 at serine 14, a modification required for RAD51 recruitment to chromatin. Overall, our results provide mechanistic insights into TOPBP1's role in HR, with potential clinical implications for cancer treatment.


Asunto(s)
Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga , Proteínas Nucleares/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Recombinasa Rad51/metabolismo , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Relación Dosis-Respuesta a Droga , Femenino , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Recombinasa Rad51/genética , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Quinasa Tipo Polo 1
10.
Oncotarget ; 6(13): 10746-58, 2015 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-25883215

RESUMEN

Based on a series of basic, preclinical and clinical studies, the Poly (ADP-ribose) Polymerase 1 (PARP1) inhibitor, olaparib, has recently been approved for use in ovarian cancer patients with BRCA1 or BRCA2 mutations. By identifying novel predictive biomarkers of tumour cell sensitivity to olaparib, it is possible that the utility of PARP inhibitors could be extended beyond this patient subgroup. Many of the known genetic determinants of PARP inhibitor response have key roles in DNA damage response (DDR) pathways. Although protein ubiquitylation is known to play an important role in regulating the DDR, the exact mechanisms by which this occurs are not fully understood. Using two parallel RNA interference-based screening approaches, we identified the E3 ubiquitin ligase, CBLC, as a candidate biomarker of response to olaparib. We validated this observation by demonstrating that silencing of CBLC causes increased sensitivity to olaparib in breast cancer cell line models and that defective homologous recombination (HR) DNA repair is the likely cause. This data provides an example of how defects in the ubiquitin machinery have the potential to influence the response of tumour cells to PARP inhibitors.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Reparación del ADN , Relación Dosis-Respuesta a Droga , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Recombinación Genética , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Ubiquitinación
11.
J Exp Med ; 209(3): 507-20, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22393126

RESUMEN

Although vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) is traditionally regarded as an endothelial cell protein, evidence suggests that VEGFRs may be expressed by cancer cells. Glioblastoma multiforme (GBM) is a lethal cancer characterized by florid vascularization and aberrantly elevated VEGF. Antiangiogenic therapy with the humanized VEGF antibody bevacizumab reduces GBM tumor growth; however, the clinical benefits are transient and invariably followed by tumor recurrence. In this study, we show that VEGFR2 is preferentially expressed on the cell surface of the CD133(+) human glioma stem-like cells (GSCs), whose viability, self-renewal, and tumorigenicity rely, at least in part, on signaling through the VEGF-VEGFR2-Neuropilin-1 (NRP1) axis. We find that the limited impact of bevacizumab-mediated VEGF blockage may reflect ongoing autocrine signaling through VEGF-VEGFR2-NRP1, which is associated with VEGFR2-NRP1 recycling and a pool of active VEGFR2 within a cytosolic compartment of a subset of human GBM cells. Whereas bevacizumab failed to inhibit prosurvival effects of VEGFR2-mediated signaling, GSC viability under unperturbed or radiation-evoked stress conditions was attenuated by direct inhibition of VEGFR2 tyrosine kinase activity and/or shRNA-mediated knockdown of VEGFR2 or NRP1. We propose that direct inhibition of VEGFR2 kinase may block the highly dynamic VEGF-VEGFR2-NRP1 pathway and inspire a GBM treatment strategy to complement the currently prevalent ligand neutralization approach.


Asunto(s)
Glioblastoma/patología , Glioblastoma/fisiopatología , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/fisiología , Neuropilina-1/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Anticuerpos Monoclonales Humanizados/farmacología , Comunicación Autocrina , Bevacizumab , Proliferación Celular , Supervivencia Celular , Endosomas/fisiología , Glioblastoma/irrigación sanguínea , Glioblastoma/terapia , Humanos , Técnicas In Vitro , Neovascularización Patológica , Neuropilina-1/antagonistas & inhibidores , Neuropilina-1/genética , ARN Interferente Pequeño/genética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
12.
Cell Cycle ; 11(8): 1573-82, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22456334

RESUMEN

The cellular DNA damage response (DDR) machinery that maintains genomic integrity and prevents severe pathologies, including cancer, is orchestrated by signaling through protein modifications. Protein ubiquitylation regulates repair of DNA double-strand breaks (DSBs), toxic lesions caused by various metabolic as well as environmental insults such as ionizing radiation (IR). Whereas several components of the DSB-evoked ubiquitylation cascade have been identified, including RNF168 and BRCA1 ubiquitin ligases, whose genetic defects predispose to a syndrome mimicking ataxia-telangiectasia and cancer, respectively, the identity of the apical E1 enzyme involved in DDR has not been established. Here, we identify ubiquitin-activating enzyme UBA1 as the E1 enzyme required for responses to IR and replication stress in human cells. We show that siRNA-mediated knockdown of UBA1, but not of another UBA family member UBA6, impaired formation of both ubiquitin conjugates at the sites of DNA damage and IR-induced foci (IRIF) by the downstream components of the DSB response pathway, 53BP1 and BRCA1. Furthermore, chemical inhibition of UBA1 prevented IRIF formation and severely impaired DSB repair and formation of 53BP1 bodies in G 1, a marker of response to replication stress. In contrast, the upstream steps of DSB response, such as phosphorylation of histone H2AX and recruitment of MDC1, remained unaffected by UBA1 depletion. Overall, our data establish UBA1 as the apical enzyme critical for ubiquitylation-dependent signaling of both DSBs and replication stress in human cells, with implications for maintenance of genomic integrity, disease pathogenesis and cancer treatment.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Enzimas Activadoras de Ubiquitina/metabolismo , Benzoatos/química , Benzoatos/farmacología , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Furanos/química , Furanos/farmacología , Fase G1 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pirazoles/química , Pirazoles/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Radiación Ionizante , Proteína 1 de Unión al Supresor Tumoral P53 , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Enzimas Activadoras de Ubiquitina/genética , Ubiquitinación
13.
J Cell Mol Med ; 14(1-2): 357-67, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19650831

RESUMEN

Cytolethal distending toxins (CDTs) are proteins produced and secreted by facultative pathogenic strains of Gram-negative bacteria with potentially genotoxic effects. Mammalian cells exposed to CDTs undergo cell type-dependent cell-cycle arrest or apoptosis; however, the cell fate responses to such intoxication are mechanistically incompletely understood. Here we show that both normal and cancer cells (BJ, IMR-90 and WI-38 fibroblasts, HeLa and U2-OS cell lines) that survive the acute phase of intoxication by Haemophilus ducreyi CDT possess the hallmarks of cellular senescence. This characteristic phenotype included persistently activated DNA damage signalling (detected as 53BP1/gammaH2AX(+) foci), enhanced senescence-associated beta-galactosidase activity, expansion of promyelocytic leukaemia nuclear compartments and induced expression of several cytokines (especially interleukins IL-6, IL-8 and IL-24), overall features shared by cells undergoing replicative or premature cellular senescence. We conclude that analogous to oncogenic, oxidative and replicative stresses, bacterial intoxication represents another pathophysiological stimulus that induces premature senescence, an intrinsic cellular response that may mechanistically underlie the 'distended' morphology evoked by CDTs. Finally, the activation of the two anticancer barriers, apoptosis and cellular senescence, together with evidence of chromosomal aberrations (micronucleation) reported here, support the emerging genotoxic and potentially oncogenic effects of this group of bacterial toxins, and warrant further investigation of their role(s) in human disease.


Asunto(s)
Toxinas Bacterianas/farmacología , Línea Celular Tumoral , Senescencia Celular/fisiología , Citocinas/metabolismo , Daño del ADN , Transducción de Señal/fisiología , Toxinas Bacterianas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/fisiología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Haemophilus ducreyi/metabolismo , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...