Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(29): eadj9510, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39018399

RESUMEN

Human interest in biodiversity is essential for effective conservation action but remains poorly quantified at large scales. Here, we investigated human interest for 2408 marine reef fishes using data obtained from online public databases and social media, summarized in two synthetic dimensions, research effort and public attention. Both dimensions are mainly related to geographic range size. Research effort is also linked to fishery importance, while public attention is more related to fish aesthetic value and aquarium trade importance. We also found a strong phylogenetic bias, with certain fish families receiving disproportional research effort and public attention. Most concerningly, species at the highest risk of extinction and those most vulnerable to future climate change tend to receive less research effort and public attention. Our results provide a lens through which examining the societal attention that species garner, with the ultimate goals to improve conservation strategies, research programs, and communication plans.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Arrecifes de Coral , Peces , Animales , Peces/fisiología , Humanos , Cambio Climático , Filogenia , Explotaciones Pesqueras
2.
Nat Commun ; 15(1): 6105, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030209

RESUMEN

Fish fecundity scales hyperallometrically with body mass, meaning larger females produce disproportionately more eggs than smaller ones. We explore this relationship beyond the species-level to estimate the "reproductive potential" of 1633 coral reef sites distributed globally. We find that, at the site-level, reproductive potential scales hyperallometrically with assemblage biomass, but with a smaller median exponent than at the species-level. Across all families, modelled reproductive potential is greater in fully protected sites versus fished sites. This difference is most pronounced for the important fisheries family, Serranidae. When comparing a scenario where 30% of sites are randomly fully protected to a current protection scenario, we estimate an increase in the reproductive potential of all families, and particularly for Serranidae. Such results point to the possible ecological benefits of the 30 × 30 global conservation target and showcase management options to promote the sustainability of population replenishment.


Asunto(s)
Arrecifes de Coral , Peces , Reproducción , Animales , Peces/fisiología , Reproducción/fisiología , Biomasa , Conservación de los Recursos Naturales , Femenino , Explotaciones Pesqueras , Fertilidad/fisiología , Ecosistema
3.
Sci Adv ; 10(26): eadn9660, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38924396

RESUMEN

Spatial and temporal patterns of future coral bleaching are uncertain, hampering global conservation efforts to protect coral reefs against climate change. Our analysis of daily projections of ocean warming establishes the severity, annual duration, and onset of severe bleaching risk for global coral reefs this century, pinpointing vital climatic refugia. We show that low-latitude coral regions are most vulnerable to thermal stress and will experience little reprieve from climate mitigation. By 2080, coral bleaching is likely to start on most reefs in spring, rather than late summer, with year-round bleaching risk anticipated to be high for some low-latitude reefs regardless of global efforts to mitigate harmful greenhouse gasses. By identifying Earth's reef regions that are at lowest risk of accelerated bleaching, our results will prioritize efforts to limit future loss of coral reef biodiversity.


Asunto(s)
Antozoos , Cambio Climático , Arrecifes de Coral , Animales , Blanqueamiento de los Corales , Conservación de los Recursos Naturales , Biodiversidad , Calentamiento Global
4.
Ecol Evol ; 14(5): e11337, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38766310

RESUMEN

Islands have been used as model systems to study ecological and evolutionary processes, and they provide an ideal set-up for validating new biodiversity monitoring methods. The application of environmental DNA metabarcoding for monitoring marine biodiversity requires an understanding of the spatial scale of the eDNA signal, which is best tested in island systems. Here, we investigated the variation in Actinopterygii and Elasmobranchii species composition recovered from eDNA metabarcoding along a gradient of distance-to-reef in four of the five French Scattered Islands in the Western Indian Ocean. We collected surface water samples at an increasing distance from reefs (0 m, 250 m, 500 m, 750 m). We used a metabarcoding protocol based on the 'teleo' primers to target marine reef fishes and classified taxa according to their habitat types (benthic or pelagic). We investigated the effect of distance-to-reef on ß diversity variation using generalised linear mixed models and estimated species-specific distance-to-reef effects using a model-based approach for community data. Environmental DNA metabarcoding analyses recovered distinct fish species compositions across the four inventoried islands and variations along the distance-to-reef gradient. The analysis of ß-diversity variation showed significant taxa turnover between the eDNA samples on and away from the reefs. In agreement with a spatially localised signal from eDNA, benthic species were distributed closer to the reef than pelagic ones. Our findings demonstrate that the combination of eDNA inventories and spatial modelling can provide insights into species habitat preferences related to distance-to-reef gradients at a small scale. As such, eDNA can not only recover large compositional differences among islands but also help understand habitat selection and distribution of marine species at a finer spatial scale.

5.
Mol Ecol ; 33(12): e17373, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703047

RESUMEN

Coastal areas host a major part of marine biodiversity but are seriously threatened by ever-increasing human pressures. Transforming natural coastlines into urban seascapes through habitat artificialization may result in loss of biodiversity and key ecosystem functions. Yet, the extent to which seaports differ from nearby natural habitats and marine reserves across the whole Tree of Life is still unknown. This study aimed to assess the level of α and ß-diversity between seaports and reserves, and whether these biodiversity patterns are conserved across taxa and evolutionary lineages. For that, we used environmental DNA (eDNA) metabarcoding to survey six seaports on the French Mediterranean coast and four strictly no-take marine reserves nearby. By targeting four different groups-prokaryotes, eukaryotes, metazoans and fish-with appropriate markers, we provide a holistic view of biodiversity on contrasted habitats. In the absence of comprehensive reference databases, we used bioinformatic pipelines to gather similar sequences into molecular operational taxonomic units (MOTUs). In contrast to our expectations, we obtained no difference in MOTU richness (α-diversity) between habitats except for prokaryotes and threatened fishes with higher diversity in reserves than in seaports. However, we observed a marked dissimilarity (ß-diversity) between seaports and reserves for all taxa. Surprisingly, this biodiversity signature of seaports was preserved across the Tree of Life, up to the order. This result reveals that seaports and nearby marine reserves share few taxa and evolutionary lineages along urbanized coasts and suggests major differences in terms of ecosystem functioning between both habitats.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , ADN Ambiental , Ecosistema , Peces , Animales , ADN Ambiental/genética , Peces/genética , Peces/clasificación , Conservación de los Recursos Naturales , Francia , Organismos Acuáticos/genética , Organismos Acuáticos/clasificación , Filogenia
6.
Mar Pollut Bull ; 201: 116193, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428047

RESUMEN

Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented "success stories" to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.


Asunto(s)
Alismatales , Ecosistema , Pradera , Mar Mediterráneo , Alismatales/fisiología , Temperatura
7.
Ecol Lett ; 27(3): e14418, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38532624

RESUMEN

Marine protected areas (MPAs) are the most widely applied tool for marine biodiversity conservation, yet many gaps remain in our understanding of their species-specific effects, partly because the socio-environmental context and spatial autocorrelation may blur and bias perceived conservation outcomes. Based on a large data set of nearly 3000 marine fish surveys spanning all tropical regions of the world, we build spatially explicit models for 658 fish species to estimate species-specific responses to protection while controlling for the environmental, habitat and socio-economic contexts experienced across their geographic ranges. We show that the species responses are highly variable, with ~40% of fishes not benefitting from protection. When investigating how traits influence species' responses, we find that rare top-predators and small herbivores benefit the most from MPAs while mid-trophic level species benefit to a lesser extent, and rare large herbivores experience adverse effects, indicating potential trophic cascades.


Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Animales , Ecosistema , Peces/fisiología , Biodiversidad
8.
Science ; 383(6686): 976-982, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422147

RESUMEN

Animal body-size variation influences multiple processes in marine ecosystems, but habitat heterogeneity has prevented a comprehensive assessment of size across pelagic (midwater) and benthic (seabed) systems along anthropic gradients. In this work, we derive fish size indicators from 17,411 stereo baited-video deployments to test for differences between pelagic and benthic responses to remoteness from human pressures and effectiveness of marine protected areas (MPAs). From records of 823,849 individual fish, we report divergent responses between systems, with pelagic size structure more profoundly eroded near human markets than benthic size structure, signifying greater vulnerability of pelagic systems to human pressure. Effective protection of benthic size structure can be achieved through MPAs placed near markets, thereby contributing to benthic habitat restoration and the recovery of associated fishes. By contrast, recovery of the world's largest and most endangered fishes in pelagic systems requires the creation of highly protected areas in remote locations, including on the High Seas, where protection efforts lag.


Asunto(s)
Tamaño Corporal , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Peces , Animales , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...