Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Gut ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816188

RESUMEN

OBJECTIVE: Hirschsprung disease (HSCR) is a severe congenital disorder affecting 1:5000 live births. HSCR results from the failure of enteric nervous system (ENS) progenitors to fully colonise the gastrointestinal tract during embryonic development. This leads to aganglionosis in the distal bowel, resulting in disrupted motor activity and impaired peristalsis. Currently, the only viable treatment option is surgical resection of the aganglionic bowel. However, patients frequently suffer debilitating, lifelong symptoms, with multiple surgical procedures often necessary. Hence, alternative treatment options are crucial. An attractive strategy involves the transplantation of ENS progenitors generated from human pluripotent stem cells (hPSCs). DESIGN: ENS progenitors were generated from hPSCs using an accelerated protocol and characterised, in detail, through a combination of single-cell RNA sequencing, protein expression analysis and calcium imaging. We tested ENS progenitors' capacity to integrate and affect functional responses in HSCR colon, after ex vivo transplantation to organotypically cultured patient-derived colonic tissue, using organ bath contractility. RESULTS: We found that our protocol consistently gives rise to high yields of a cell population exhibiting transcriptional and functional hallmarks of early ENS progenitors. Following transplantation, hPSC-derived ENS progenitors integrate, migrate and form neurons/glia within explanted human HSCR colon samples. Importantly, the transplanted HSCR tissue displayed significantly increased basal contractile activity and increased responses to electrical stimulation compared with control tissue. CONCLUSION: Our findings demonstrate, for the first time, the potential of hPSC-derived ENS progenitors to repopulate and increase functional responses in human HSCR patient colonic tissue.

2.
Nat Microbiol ; 9(5): 1293-1311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622380

RESUMEN

Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Células Epiteliales , Mucosa Nasal , SARS-CoV-2 , Serina Endopeptidasas , Humanos , COVID-19/virología , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Adulto , Persona de Mediana Edad , Anciano , Células Epiteliales/virología , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Mucosa Nasal/virología , Niño , Factores de Edad , Replicación Viral , Preescolar , Tropismo Viral , Masculino , Femenino , Anciano de 80 o más Años , Células Cultivadas , Adolescente , Lactante
3.
Brain Behav Immun ; 111: 127-137, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37037363

RESUMEN

Peripheral injury during the early postnatal period alters the somatosensory system, leading to behavioural hyperalgesia upon re-injury in adulthood. Spinal microglia have been implicated as the cellular mediators of this phenomenon, but the mechanism is unclear. We hypothesised that neonatal injury (1) alters microglial phagocytosis of synapses in the dorsal horn leading to long-term structural changes in neurons, and/or (2) trains microglia, leading to a stronger microglial response after re-injury in adulthood. Using hindpaw surgical incision as a model we showed that microglial density and phagocytosis increased in the dorsal horn region innervated by the hindpaw. Dorsal horn microglia increased engulfment of synapses following injury, with a preference for those expressing the vesicular GABA transporter VGAT and primary afferent A-fibre terminals in neonates. This led to a long-term reduction of VGAT density in the dorsal horn and reduced microglial phagocytosis of VGLUT2 terminals. We also saw an increase in apoptosis following neonatal injury, which was not limited to the dorsal horn suggesting that larger circuit wide changes are happening. In adults, hindpaw incision increased microglial engulfment of predominantly VGAT synapses but did not alter the engulfment of A-fibres. This engulfment was not affected by prior neonatal injury, suggesting that microglial phagocytosis was not trained. These results highlight microglial phagocytosis in the dorsal horn as an important physiological response towards peripheral injury with potential long-term consequences and reveals differences in microglial responses between neonates and adults.


Asunto(s)
Microglía , Lesiones de Repetición , Ratas , Animales , Recién Nacido , Humanos , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal , Hiperalgesia , Médula Espinal , Células del Asta Posterior
4.
J Leukoc Biol ; 113(4): 354-364, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36807711

RESUMEN

The recruitment of neutrophils to the infected airway occurs early following respiratory syncytial virus (RSV) infection, and high numbers of activated neutrophils in the airway and blood are associated with the development of severe disease. The aim of this study was to investigate whether trans-epithelial migration is sufficient and necessary for neutrophil activation during RSV infection. Here, we used flow cytometry and novel live-cell fluorescent microscopy to track neutrophil movement during trans-epithelial migration and measure the expression of key activation markers in a human model of RSV infection. We found that when migration occurred, neutrophil expression of CD11b, CD62L, CD64, NE, and MPO increased. However, the same increase did not occur on basolateral neutrophils when neutrophils were prevented from migrating, suggesting that activated neutrophils reverse migrate from the airway to the bloodstream side, as has been suggested by clinical observations. We then combined our findings with the temporal and spatial profiling and suggest 3 initial phases of neutrophil recruitment and behavior in the airways during RSV infection; (1) initial chemotaxis; (2) neutrophil activation and reverse migration; and (3) amplified chemotaxis and clustering, all of which occur within 20 min. This work and the novel outputs could be used to develop therapeutics and provide new insight into how neutrophil activation and a dysregulated neutrophil response to RSV mediates disease severity.


Asunto(s)
Activación Neutrófila , Infecciones por Virus Sincitial Respiratorio , Humanos , Infecciones por Virus Sincitial Respiratorio/metabolismo , Sistema Respiratorio , Neutrófilos/metabolismo , Infiltración Neutrófila
5.
Cells ; 12(3)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36766688

RESUMEN

Primary keratinocytes including keratinocyte stem cells (KSCs) can be cultured as epidermal sheets in vitro and are attractive for cell and gene therapies for genetic skin disorders. However, the initial slow growth of freshly isolated keratinocytes hinders clinical applications. Rho-associated kinase inhibitor (ROCKi) has been used to overcome this obstacle, but its influence on the characteristics of KSC and its safety for clinical application remains unknown. In this study, primary keratinocytes were treated with ROCKi Y-27632 for six days (short-term). Significant increases in colony formation and cell proliferation during the six-day ROCKi treatment were observed and confirmed by related protein markers and single-cell transcriptomic analysis. In addition, short-term ROCKi-treated cells maintained their differentiation ability as examined by 3D-organotypic culture. However, these changes could be reversed and became indistinguishable between treated and untreated cells once ROCKi treatment was withdrawn. Further, the short-term ROCKi treatment did not reduce the number of KSCs. In addition, AKT and ERK pathways were rapidly activated upon ROCKi treatment. In conclusion, short-term ROCKi treatment can transiently and reversibly accelerate initial primary keratinocyte expansion while preserving the holoclone-forming cell population (KSCs), providing a safe avenue for clinical applications.


Asunto(s)
Queratinocitos , Quinasas Asociadas a rho , Células Cultivadas , Células Madre , Epidermis , Inhibidores de Proteínas Quinasas/farmacología
6.
Ann Rheum Dis ; 82(5): 658-669, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36564154

RESUMEN

OBJECTIVES: To define the host mechanisms contributing to the pathological interferon (IFN) type 1 signature in Juvenile dermatomyositis (JDM). METHODS: RNA-sequencing was performed on CD4+, CD8+, CD14+ and CD19+ cells sorted from pretreatment and on-treatment JDM (pretreatment n=10, on-treatment n=11) and age/sex-matched child healthy-control (CHC n=4) peripheral blood mononuclear cell (PBMC). Mitochondrial morphology and superoxide were assessed by fluorescence microscopy, cellular metabolism by 13C glucose uptake assays, and oxidised mitochondrial DNA (oxmtDNA) content by dot-blot. Healthy-control PBMC and JDM pretreatment PBMC were cultured with IFN-α, oxmtDNA, cGAS-inhibitor, TLR-9 antagonist and/or n-acetyl cysteine (NAC). IFN-stimulated gene (ISGs) expression was measured by qPCR. Total numbers of patient and controls for functional experiments, JDM n=82, total CHC n=35. RESULTS: Dysregulated mitochondrial-associated gene expression correlated with increased ISG expression in JDM CD14+ monocytes. Altered mitochondrial-associated gene expression was paralleled by altered mitochondrial biology, including 'megamitochondria', cellular metabolism and a decrease in gene expression of superoxide dismutase (SOD)1. This was associated with enhanced production of oxidised mitochondrial (oxmt)DNA. OxmtDNA induced ISG expression in healthy PBMC, which was blocked by targeting oxidative stress and intracellular nucleic acid sensing pathways. Complementary experiments showed that, under in vitro experimental conditions, targeting these pathways via the antioxidant drug NAC, TLR9 antagonist and to a lesser extent cGAS-inhibitor, suppressed ISG expression in pretreatment JDM PBMC. CONCLUSIONS: These results describe a novel pathway where altered mitochondrial biology in JDM CD14+ monocytes lead to oxmtDNA production and stimulates ISG expression. Targeting this pathway has therapeutical potential in JDM and other IFN type 1-driven autoimmune diseases.


Asunto(s)
Dermatomiositis , Interferón Tipo I , Niño , Humanos , Leucocitos Mononucleares/metabolismo , Monocitos/metabolismo , ADN Mitocondrial , Interferón Tipo I/metabolismo , Nucleotidiltransferasas
7.
PLoS Pathog ; 18(11): e1010774, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36441826

RESUMEN

Expression of the transcriptional transactivator protein Tax, encoded on the proviral plus-strand of human T-cell leukaemia virus type 1 (HTLV-1), is crucial for the replication of the virus, but Tax-expressing cells are rarely detected in fresh blood ex vivo. The dynamics and consequences of the proviral plus-strand transcriptional burst remain insufficiently characterised. We combined time-lapse live-cell imaging, single-cell tracking and mathematical modelling to study the dynamics of Tax expression at single-cell resolution in two naturally-infected, non-malignant T-cell clones transduced with a short-lived enhanced green fluorescent protein (d2EGFP) Tax reporter system. Five different patterns of Tax expression were observed during the 30-hour observation period; the distribution of these patterns differed between the two clones. The mean duration of Tax expression in the two clones was 94 and 417 hours respectively, estimated from mathematical modelling of the experimental data. Tax expression was associated with a transient slowing in cell-cycle progression and proliferation, increased apoptosis, and enhanced activation of the DNA damage response pathways. Longer-term follow-up (14 days) revealed an increase in the proportion of proliferating cells and a decrease in the fraction of apoptotic cells as the cells ceased Tax expression, resulting in a greater net expansion of the initially Tax-positive population. Time-lapse live-cell imaging showed enhanced cell-to-cell adhesion among Tax-expressing cells, and decreased cell motility of Tax-expressing cells at the single-cell level. The results demonstrate the within-clone and between-clone heterogeneity in the dynamics and patterns of HTLV-1 plus-strand transcriptional bursts and the balance of positive and negative consequences of the burst for the host cell.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Provirus , Humanos , Provirus/genética , Virus Linfotrópico T Tipo 1 Humano/genética
8.
Front Immunol ; 13: 888427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159783

RESUMEN

Purpose: Janus kinase-1 (JAK1) tyrosine kinase mediates signaling from multiple cytokine receptors, including interferon alpha/beta and gamma (IFN-α/ß and IFN-γ), which are important for viral and mycobacterial protection respectively. We previously reported autosomal recessive (AR) hypomorphic JAK1 mutations in a patient with recurrent atypical mycobacterial infections and relatively minor viral infections. This study tests the impact of partial JAK1 deficiency on cellular responses to IFNs and pathogen control. Methods: We investigated the role of partial JAK1 deficiency using patient cells and cell models generated with lentiviral vectors expressing shRNA. Results: Partial JAK1 deficiency impairs IFN-γ-dependent responses in multiple cell types including THP-1 macrophages, Epstein-Barr Virus (EBV)-transformed B cells and primary dermal fibroblasts. In THP-1 myeloid cells, partial JAK1 deficiency reduced phagosome acidification and apoptosis and resulted in defective control of mycobacterial infection with enhanced intracellular survival. Although both EBV-B cells and primary dermal fibroblasts with partial JAK1 deficiency demonstrate reduced IFN-α responses, control of viral infection was impaired only in patient EBV-B cells and surprisingly intact in patient primary dermal fibroblasts. Conclusion: Our data suggests that partial JAK1 deficiency predominantly affects susceptibility to mycobacterial infection through impact on the IFN-γ responsive pathway in myeloid cells. Susceptibility to viral infections as a result of reduced IFN-α responses is variable depending on cell type. Description of additional patients with inherited JAK1 deficiency will further clarify the spectrum of bacterial and viral susceptibility in this condition. Our results have broader relevance for anticipating infectious complications from the increasing use of selective JAK1 inhibitors.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Mycobacterium , Mycobacterium , Herpesvirus Humano 4/genética , Humanos , Interferón-alfa/farmacología , Interferón beta , Interferón gamma/genética , Janus Quinasa 1/genética , Mycobacterium/genética , Infecciones por Mycobacterium/genética , ARN Interferente Pequeño , Receptores de Citocinas
9.
Sci Rep ; 12(1): 12172, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842494

RESUMEN

Plasma ultrafiltration in the kidney occurs across glomerular capillaries, which are surrounded by epithelial cells called podocytes. Podocytes have a unique shape maintained by a complex cytoskeleton, which becomes disrupted in glomerular disease resulting in defective filtration and albuminuria. Lack of endogenous thymosin ß4 (TB4), an actin sequestering peptide, exacerbates glomerular injury and disrupts the organisation of the podocyte actin cytoskeleton, however, the potential of exogenous TB4 therapy to improve podocyte injury is unknown. Here, we have used Adriamycin (ADR), a toxin which injures podocytes and damages the glomerular filtration barrier leading to albuminuria in mice. Through interrogating single-cell RNA-sequencing data of isolated glomeruli we demonstrate that ADR injury results in reduced levels of podocyte TB4. Administration of an adeno-associated viral vector encoding TB4 increased the circulating level of TB4 and prevented ADR-induced podocyte loss and albuminuria. ADR injury was associated with disorganisation of the podocyte actin cytoskeleton in vitro, which was ameliorated by treatment with exogenous TB4. Collectively, we propose that systemic gene therapy with TB4 prevents podocyte injury and maintains glomerular filtration via protection of the podocyte cytoskeleton thus presenting a novel treatment strategy for glomerular disease.


Asunto(s)
Enfermedades Renales , Podocitos , Albuminuria , Animales , Células Cultivadas , Doxorrubicina , Terapia Genética , Glomérulos Renales , Ratones , Timosina
10.
PLoS One ; 17(5): e0262558, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35544526

RESUMEN

Individuals who have Down syndrome (trisomy 21) are at greatly increased risk of developing Alzheimer's disease, characterised by the accumulation in the brain of amyloid-ß plaques. Amyloid-ß is a product of the processing of the amyloid precursor protein, encoded by the APP gene on chromosome 21. In Down syndrome the first site of amyloid-ß accumulation is within endosomes, and changes to endosome biology occur early in Alzheimer's disease. Here, we determine if primary mouse embryonic fibroblasts isolated from a mouse model of Down syndrome can be used to study endosome and APP cell biology. We report that in this cellular model, endosome number, size and APP processing are not altered, likely because APP is not dosage sensitive in the model, despite three copies of App.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Biología , Síndrome de Down/genética , Síndrome de Down/metabolismo , Endosomas/metabolismo , Fibroblastos/metabolismo , Ratones , Placa Amiloide/metabolismo
11.
Sci Rep ; 12(1): 6646, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459774

RESUMEN

Retinal degenerative diseases are a leading cause of blindness worldwide with debilitating life-long consequences for the affected individuals. Cell therapy is considered a potential future clinical intervention to restore and preserve sight by replacing lost photoreceptors and/or retinal pigment epithelium. Development of protocols to generate retinal tissue from human pluripotent stem cells (hPSC), reliably and at scale, can provide a platform to generate photoreceptors for cell therapy and to model retinal disease in vitro. Here, we describe an improved differentiation platform to generate retinal organoids from hPSC at scale and free from time-consuming manual microdissection steps. The scale up was achieved using an agarose mould platform enabling generation of uniform self-assembled 3D spheres from dissociated hPSC in microwells. Subsequent retinal differentiation was efficiently achieved via a stepwise differentiation protocol using a number of small molecules. To facilitate clinical translation, xeno-free approaches were developed by substituting Matrigel™ and foetal bovine serum with recombinant laminin and human platelet lysate, respectively. Generated retinal organoids exhibited important features reminiscent of retinal tissue including correct site-specific localisation of proteins involved in phototransduction.


Asunto(s)
Células Madre Pluripotentes , Diferenciación Celular , Humanos , Organoides , Retina , Epitelio Pigmentado de la Retina/metabolismo
12.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35132964

RESUMEN

Norrie disease is caused by mutation of the NDP gene, presenting as congenital blindness followed by later onset of hearing loss. Protecting patients from hearing loss is critical for maintaining their quality of life. This study aimed to understand the onset of pathology in cochlear structure and function. By investigating patients and juvenile Ndp-mutant mice, we elucidated the sequence of onset of physiological changes (in auditory brainstem responses, distortion product otoacoustic emissions, endocochlear potential, blood-labyrinth barrier integrity) and determined the cellular, histological, and ultrastructural events leading to hearing loss. We found that cochlear vascular pathology occurs earlier than previously reported and precedes sensorineural hearing loss. The work defines a disease mechanism whereby early malformation of the cochlear microvasculature precedes loss of vessel integrity and decline of endocochlear potential, leading to hearing loss and hair cell death while sparing spiral ganglion cells. This provides essential information on events defining the optimal therapeutic window and indicates that early intervention is needed. In an era of advancing gene therapy and small-molecule technologies, this study establishes Ndp-mutant mice as a platform to test such interventions and has important implications for understanding the progression of hearing loss in Norrie disease.


Asunto(s)
Ceguera/congénito , Manejo de la Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Predicción , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Pérdida Auditiva Sensorineural/fisiopatología , Audición/fisiología , Enfermedades del Sistema Nervioso/fisiopatología , Degeneración Retiniana/fisiopatología , Espasmos Infantiles/fisiopatología , Adolescente , Adulto , Animales , Ceguera/complicaciones , Ceguera/fisiopatología , Ceguera/terapia , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Estudios de Seguimiento , Enfermedades Genéticas Ligadas al Cromosoma X/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/terapia , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/etiología , Humanos , Masculino , Ratones , Ratones Mutantes , Enfermedades del Sistema Nervioso/complicaciones , Enfermedades del Sistema Nervioso/terapia , Degeneración Retiniana/complicaciones , Degeneración Retiniana/terapia , Espasmos Infantiles/complicaciones , Espasmos Infantiles/terapia , Adulto Joven
13.
Methods Mol Biol ; 2438: 217-230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147945

RESUMEN

Laser ablation is routinely performed to infer mechanical tension in cells and tissues. Here we describe our method of two-photon laser ablation at the cellular and tissue level in mouse embryos. The primary outcome of these experiments is initial retraction following ablation, which correlates with, and so can be taken as a measure of, the tensile stress that structure was under before ablation. Several experimental variables can affect interpretation of ablation tests. Pre-test factors include differences in physical properties such as viscoelasticity between experimental conditions. Factors relevant during the test include viability of the cells at the point of ablation, image acquisition rate and the potential for overzealous ablations to cause air bubbles through heat dissipation. Post-test factors include intensity-biased image registration that can artificially produce apparent directionality. Applied to the closing portion of the mouse spinal neural tube, these methods have demonstrated long-range biomechanical coupling of the embryonic structure and have identified highly contractile cell populations involved in its closure process.


Asunto(s)
Terapia por Láser , Tubo Neural , Animales , Fenómenos Biomecánicos , Terapia por Láser/métodos , Rayos Láser , Ratones , Morfogénesis
14.
Sci Rep ; 11(1): 17189, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433854

RESUMEN

Neuronal nitric oxide synthase (nNOS) neurons play a fundamental role in inhibitory neurotransmission, within the enteric nervous system (ENS), and in the establishment of gut motility patterns. Clinically, loss or disruption of nNOS neurons has been shown in a range of enteric neuropathies. However, the effects of nNOS loss on the composition and structure of the ENS remain poorly understood. The aim of this study was to assess the structural and transcriptional consequences of loss of nNOS neurons within the murine ENS. Expression analysis demonstrated compensatory transcriptional upregulation of pan neuronal and inhibitory neuronal subtype targets within the Nos1-/- colon, compared to control C57BL/6J mice. Conventional confocal imaging; combined with novel machine learning approaches, and automated computational analysis, revealed increased interconnectivity within the Nos1-/- ENS, compared to age-matched control mice, with increases in network density, neural projections and neuronal branching. These findings provide the first direct evidence of structural and molecular remodelling of the ENS, upon loss of nNOS signalling. Further, we demonstrate the utility of machine learning approaches, and automated computational image analysis, in revealing previously undetected; yet potentially clinically relevant, changes in ENS structure which could provide improved understanding of pathological mechanisms across a host of enteric neuropathies.


Asunto(s)
Sistema Nervioso Entérico/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Animales , Sistema Nervioso Entérico/citología , Aprendizaje Automático , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/citología , Red Nerviosa/metabolismo , Neuronas/citología , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/deficiencia
15.
Genet Med ; 23(9): 1636-1647, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34145395

RESUMEN

PURPOSE: Much of the heredity of melanoma remains unexplained. We sought predisposing germline copy-number variants using a rare disease approach. METHODS: Whole-genome copy-number findings in patients with melanoma predisposition syndrome congenital melanocytic nevus were extrapolated to a sporadic melanoma cohort. Functional effects of duplications in PPP2R3B were investigated using immunohistochemistry, transcriptomics, and stable inducible cellular models, themselves characterized using RNAseq, quantitative real-time polymerase chain reaction (qRT-PCR), reverse phase protein arrays, immunoblotting, RNA interference, immunocytochemistry, proliferation, and migration assays. RESULTS: We identify here a previously unreported genetic susceptibility to melanoma and melanocytic nevi, familial duplications of gene PPP2R3B. This encodes PR70, a regulatory unit of critical phosphatase PP2A. Duplications increase expression of PR70 in human nevus, and increased expression in melanoma tissue correlates with survival via a nonimmunological mechanism. PPP2R3B overexpression induces pigment cell switching toward proliferation and away from migration. Importantly, this is independent of the known microphthalmia-associated transcription factor (MITF)-controlled switch, instead driven by C21orf91. Finally, C21orf91 is demonstrated to be downstream of MITF as well as PR70. CONCLUSION: This work confirms the power of a rare disease approach, identifying a previously unreported copy-number change predisposing to melanocytic neoplasia, and discovers C21orf91 as a potentially targetable hub in the control of phenotype switching.


Asunto(s)
Melanoma , Nevo , Neoplasias Cutáneas , Humanos , Inmunohistoquímica , Melanoma/genética , Fenotipo , Neoplasias Cutáneas/genética
16.
Eur Respir J ; 58(4)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33795320

RESUMEN

BACKGROUND: Development of therapeutic approaches for rare respiratory diseases is hampered by the lack of systems that allow medium-to-high-throughput screening of fully differentiated respiratory epithelium from affected patients. This is a particular problem for primary ciliary dyskinesia (PCD), a rare genetic disease caused by mutations in genes that adversely affect ciliary movement and consequently mucociliary transport. Primary cell culture of basal epithelial cells from nasal brush biopsies followed by ciliated differentiation at the air-liquid interface (ALI) has proven to be a useful tool in PCD diagnostics but the technique's broader utility, including in pre-clinical PCD research, has been restricted by the limited number of basal cells that can be expanded from such biopsies. METHODS: We describe an immunofluorescence screening method, enabled by extensive expansion of basal cells from PCD patients and the directed differentiation of these cells into ciliated epithelium in miniaturised 96-well transwell format ALI cultures. As proof-of-principle, we performed a personalised investigation in a patient with a rare and severe form of PCD (reduced generation of motile cilia), in this case caused by a homozygous nonsense mutation in the MCIDAS gene. RESULTS: Initial analyses of ciliary ultrastructure, beat pattern and beat frequency in the 96-well transwell format ALI cultures indicate that a range of different PCD defects can be retained in these cultures. The screening system in our proof-of-principal investigation allowed drugs that induce translational readthrough to be evaluated alone or in combination with nonsense-mediated decay inhibitors. We observed restoration of basal body formation but not the generation of cilia in the patient's nasal epithelial cells in vitro. CONCLUSION: Our study provides a platform for higher throughput analyses of airway epithelia that is applicable in a range of settings and suggests novel avenues for drug evaluation and development in PCD caused by nonsense mutations.


Asunto(s)
Trastornos de la Motilidad Ciliar , Síndrome de Kartagener , Cilios , Trastornos de la Motilidad Ciliar/diagnóstico , Trastornos de la Motilidad Ciliar/tratamiento farmacológico , Trastornos de la Motilidad Ciliar/genética , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/tratamiento farmacológico , Síndrome de Kartagener/genética , Depuración Mucociliar
17.
Neuropathol Appl Neurobiol ; 47(6): 781-795, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33797808

RESUMEN

AIMS: We understand little of the pathogenesis of developmental cortical lesions, because we understand little of the diversity of the cell types that contribute to the diseases or how those cells interact. We tested the hypothesis that cellular diversity and cell-cell interactions play an important role in these disorders by investigating the signalling molecules in the commonest cortical malformations that lead to childhood epilepsy, focal cortical dysplasia (FCD) and tuberous sclerosis (TS). METHODS: Transcriptional profiling clustered cases into molecularly distinct groups. Using gene expression data, we identified the secretory signalling molecules in FCD/TS and characterised the cell types expressing these molecules. We developed a functional model using organotypic cultures. RESULTS: We identified 113 up-regulated secretory molecules in FCDIIB/TS. The top 12 differentially expressed genes (DEGs) were validated by immunohistochemistry. This highlighted two molecules, Chitinase 3-like protein 1 (CHI3L1) and C-C motif chemokine ligand 2 (CCL2) (MCP1) that were expressed in a unique population of small cells in close proximity to balloon cells (BC). We then characterised these cells and developed a functional model in organotypic slice cultures. We found that the number of CHI3L1 and CCL2 expressing cells decreased following inhibition of mTOR, the main aberrant signalling pathway in TS and FCD. CONCLUSIONS: Our findings highlight previously uncharacterised small cell populations in FCD and TS which express specific signalling molecules. These findings indicate a new level of diversity and cellular interactions in cortical malformations and provide a generalisable approach to understanding cell-cell interactions and cellular heterogeneity in developmental neuropathology.


Asunto(s)
Encéfalo/metabolismo , Discapacidades del Desarrollo/metabolismo , Malformaciones del Desarrollo Cortical/patología , Transducción de Señal/fisiología , Esclerosis Tuberosa/metabolismo , Encéfalo/patología , Discapacidades del Desarrollo/patología , Humanos , Inmunohistoquímica , Malformaciones del Desarrollo Cortical/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I/metabolismo , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología
18.
Nucleic Acid Ther ; 30(4): 237-248, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32240058

RESUMEN

Neuroblastoma (NB) is the most common solid tumor in childhood. Twenty percent of patients display MYCN amplification, which indicates a very poor prognosis. MYCN is a highly specific target for an NB tumor therapy as MYCN expression is absent or very low in most normal cells, while, as a transcription factor, it regulates many essential cell activities in tumor cells. We aim to develop a therapy for NB based on MYCN silencing by short interfering RNA (siRNA) molecules, which can silence target genes by RNA interference (RNAi), a naturally occurring method of gene silencing. It has been shown previously that MYCN silencing can induce apoptosis and differentiation in MYCN amplified NB. In this article, we have demonstrated that siRNA-mediated silencing of MYCN in MYCN-amplified NB cells induced neurogenesis in NB cells, whereas retinoic acid (RA) treatment did not. RA can differentiate NB cells and is used for treatment of residual disease after surgery or chemotherapy, but resistance can develop. In addition, MYCN siRNA treatment suppressed growth in a MYCN-amplified NB cell line more than that by RA. Our result suggests that gene therapy using RNAi targeting MYCN can be a novel therapy toward MYCN-amplified NB that have complete or partial resistance toward RA.


Asunto(s)
Silenciador del Gen/efectos de los fármacos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , ARN Interferente Pequeño/farmacología , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteína Proto-Oncogénica N-Myc/antagonistas & inhibidores , Neuroblastoma/genética , Neuroblastoma/patología , Neurogénesis/efectos de los fármacos , Interferencia de ARN/efectos de los fármacos , ARN Interferente Pequeño/genética , Tretinoina/efectos adversos , Tretinoina/farmacología
19.
Eur Respir J ; 56(2)2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32217648

RESUMEN

Respiratory syncytial virus (RSV) bronchiolitis is the most common cause of infant hospital admissions, but there is limited understanding of the mechanisms of disease, and no specific antiviral treatment. Using a novel in vitro primary transepithelial neutrophil migration model and innovative imaging methods, we show that RSV infection of nasal airway epithelium increased neutrophil transepithelial migration and adhesion to infected epithelial cells, which is associated with epithelial cell damage and reduced ciliary beat frequency, but also with a reduction in infectious viral load.Following migration, RSV infection results in greater neutrophil activation, degranulation and release of neutrophil elastase into the airway surface media compared to neutrophils that migrated across mock-infected nasal epithelial cells. Blocking of the interaction between the ligand on neutrophils (the ß2-integrin LFA-1) for intracellular adhesion molecule (ICAM)-1 on epithelial cells reduced neutrophil adherence to RSV-infected cells and epithelial cell damage to pre-infection levels, but did not reduce the numbers of neutrophils that migrated or prevent the reduction in infectious viral load.These findings have provided important insights into the contribution of neutrophils to airway damage and viral clearance, which are relevant to the pathophysiology of RSV bronchiolitis. This model is a convenient, quantitative preclinical model that will further elucidate mechanisms that drive disease severity and has utility in antiviral drug discovery.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Antígenos CD18 , Humanos , Lactante , Antígeno-1 Asociado a Función de Linfocito , Neutrófilos , Migración Transendotelial y Transepitelial
20.
Methods Mol Biol ; 2067: 103-126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31701448

RESUMEN

Microscopic and macroscopic evaluation of biological tissues in three dimensions is becoming increasingly popular. This trend is coincident with the emergence of numerous tissue clearing strategies, and advancements in confocal and two-photon microscopy, enabling the study of intact organs and systems down to cellular and sub-cellular resolution. In this chapter, we describe a wholemount immunofluorescence technique for labeling structures in renal tissue. This technique combined with solvent-based tissue clearing and confocal imaging, with or without two-photon excitation, provides greater structural information than traditional sectioning and staining alone. Given the addition of paraffin embedding to our method, this hybrid protocol offers a powerful approach to combine confocal or two-photon findings with histological and further immunofluorescent analysis within the same tissue.


Asunto(s)
Técnicas de Preparación Histocitológica/métodos , Imagenología Tridimensional/métodos , Riñón/diagnóstico por imagen , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Humanos , Imagenología Tridimensional/instrumentación , Riñón/patología , Ratones , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Programas Informáticos , Solventes/química , Coloración y Etiquetado/métodos , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA