Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(1): 011901, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242645

RESUMEN

Energy-energy correlators (EECs) are promising observables to study the dynamics of jet evolution in the quark-gluon plasma (QGP) through its imprint on angular scales in the energy flux of final-state particles. We carry out the first complete calculation of EECs using realistic simulations of high-energy heavy-ion collisions and dissect the different dynamics underlying the final distribution through analyses of jet propagation in a uniform medium. The EECs of γ-jets in heavy-ion collisions are found to be enhanced by the medium response from elastic scatterings instead of induced gluon radiation at large angles. In the meantime, EECs are suppressed at small angles due to energy loss and transverse momentum broadening of jet shower partons. These modifications are further shown to be sensitive to the angular scale of the in-medium interaction, as characterized by the Debye screening mass. Experimental verification and measurement of such modifications will shed light on this scale and the short-distance structure of the QGP in heavy-ion collisions.

2.
Phys Rev Lett ; 130(26): 262301, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37450806

RESUMEN

Jets provide us with ideal probes of the quark-gluon plasma (QGP) produced in heavy-ion collisions, since its dynamics at its different scales is imprinted into the multiscale substructure of the final state jets. We present a new approach to jet substructure in heavy-ion collisions based on the study of correlation functions of energy flow operators. By analyzing the two-point correlator of an in-medium quark jet, we demonstrate that the spectra of correlation functions robustly identify the scales defined by the properties of the QGP, particularly those associated with the onset of color coherence.


Asunto(s)
Alimentos , Plasma
3.
Phys Rev Lett ; 130(5): 051901, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36800452

RESUMEN

Jets of hadrons produced at high-energy colliders provide experimental access to the dynamics of asymptotically free quarks and gluons and their confinement into hadrons. In this Letter, we show that the high energies of the Large Hadron Collider (LHC), together with the exceptional resolution of its detectors, allow multipoint correlation functions of energy flow operators to be directly measured within jets for the first time. Using Open Data from the CMS experiment, we show that reformulating jet substructure in terms of these correlators provides new ways of probing the dynamics of QCD jets, which enables direct imaging of the confining transition to free hadrons as well as precision measurements of the scaling properties and interactions of quarks and gluons. This opens a new era in our understanding of jet substructure and illustrates the immense unexploited potential of high-quality LHC data sets for elucidating the dynamics of QCD.

4.
Phys Rev Lett ; 128(18): 182001, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35594111

RESUMEN

Collider experiments often exploit information about the quantum numbers of final state hadrons to maximize their sensitivity, with applications ranging from the use of tracking information (electric charge) for precision jet substructure measurements, to flavor tagging for nucleon structure studies. For such measurements, perturbative calculations in terms of quarks and gluons are insufficient, and nonperturbative track functions describing the energy fraction of a quark or gluon converted into a subset of hadrons (e.g., charged hadrons) must be incorporated. Unlike fragmentation functions, track functions describe correlations between hadrons and therefore satisfy complicated nonlinear evolution equations whose structure has so far eluded calculation beyond the leading order. In this Letter, we develop an understanding of track functions and their interplay with energy flow observables beyond the leading order, allowing them to be used in state-of-the-art perturbative calculations for the first time. We identify a shift symmetry in the evolution of their moments that fixes their structure, and we explicitly compute the evolution of the first three moments at next-to-leading order, allowing for the description of up to three-point energy correlations. We then calculate the two-point energy correlator on charged particles at O(α_{s}^{2}), illustrating explicitly that infrared singularities in perturbation theory are absorbed by moments of the track functions and also highlighting how these moments seamlessly interplay with modern techniques for perturbative calculations. Our results extend the boundaries of traditional perturbative QCD, enabling precision perturbative predictions for energy flow observables sensitive to the quantum numbers of hadronic states.

5.
Phys Rev Lett ; 126(11): 112003, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33798370

RESUMEN

Collimated sprays of hadrons, called jets, are an emergent phenomenon of quantum chromodynamics (QCD) at collider experiments, whose detailed internal structure encodes valuable information about the interactions of high energy quarks and gluons and their confinement into color-neutral hadrons. The flow of energy within jets is characterized by correlation functions of energy flow operators, with the three-point correlator being the first correlator with nontrivial shape dependence, playing a special role in unraveling the dynamics of QCD. In this Letter, we initiate a study of the three-point energy correlator to all orders in the strong coupling constant, in the limit where two of the detectors are squeezed together. We show that, by rotating the two squeezed detectors with respect to the third by an angle ϕ, a cos(2ϕ) dependence arising from the quantum interference between intermediate virtual gluons with +/- helicity is imprinted on the detector. This can be regarded as a double slit experiment performed with jet substructure, and it provides a direct probe of the ultimately quantum nature of the substructure of jets and of transverse spin physics in QCD. To facilitate our all-orders analysis, we adopt the operator product expansion (OPE) for light-ray operators in conformal field theory and develop it in QCD. Our application of the light-ray OPE in real world QCD establishes it as a powerful theoretical tool with broad applications for the study of jet substructure.

6.
Phys Rev Lett ; 123(6): 062001, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31491135

RESUMEN

We present an operator-based factorization formula for the transverse energy-energy correlator (TEEC) hadron collider event shape in the back-to-back (dijet) limit. This factorization formula exhibits a remarkably symmetric form, being a projection onto a scattering plane of a more standard transverse momentum dependent factorization. Soft radiation is incorporated through a dijet soft function, which can be elegantly obtained to next-to-next-to-leading order (NNLO) due to the symmetries of the problem. We present numerical results for the TEEC resummed to next-to-next-to-leading logarithm (NNLL) matched to fixed order at the LHC. Our results constitute the first NNLL resummation for a dijet event shape observable at a hadron collider, and the first analytic result for a hadron collider dijet soft function at NNLO. We anticipate that the theoretical simplicity of the TEEC observable will make it indispensable for precision studies of QCD at the LHC, and as a playground for theoretical studies of factorization and its violation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...