Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1416057, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238888

RESUMEN

Introduction: Endosymbiotic bacteria in the genus Wolbachia have evolved numerous strategies for manipulating host reproduction in order to promote their own transmission. This includes the feminization of males into functional females, a well-studied phenotype in the isopod Armadillidium vulgare. Despite an early description of this phenotype in isopods and the development of an evolutionary model of host sex determination in the presence of Wolbachia, the underlying genetic mechanisms remain elusive. Methods: Here we present the first complete genomes of the three feminizing Wolbachia (wVulC, wVulP, and wVulM) known to date in A. vulgare. These genomes, belonging to Wolbachia B supergroup, contain a large number of mobile elements such as WO prophages with eukaryotic association modules. Taking advantage of these data and those of another Wolbachia-derived feminizing factor integrated into the host genome (f element), we used a comparative genomics approach to identify putative feminizing factors. Results: This strategy has enabled us to identify three prophage-associated genes secreted by the Type IV Secretion System: one ankyrin repeat domain-containing protein, one helix-turn-helix transcriptional regulator and one hypothetical protein. In addition, a latrotoxin-related protein, associated with phage relic genes, was shared by all three genomes and the f element. Conclusion: These putative feminization-inducing proteins shared canonical interaction features with eukaryotic proteins. These results pave the way for further research into the underlying functional interactions.

2.
Data Brief ; 55: 110655, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39044909

RESUMEN

After Amazonia, the Congo Basin represents the second-largest tropical rainforest area in the world. This basin harbours remarkable biodiversity, yet much of its microbiological diversity within its waters, soils, and populations remains largely unexplored and undiscovered. While many initiatives to characterize global biodiversity are being undertaken, few are conducted in Africa and none of them concern the Congo Basin specifically in urban areas. In this context, we assessed the microbial diversity present in gutter water in the city of Pointe-Noire, Congo. This town has interesting characteristics as the population density is high and it is located between the Atlantic Ocean and the forest of Mayombe in Central Africa. The findings illuminate the microbial composition of surface water in Pointe-Noire. The dataset allows the identification of putative new bacteria through the assembly of 81 meta-genome-assembled genomes. It also serves as a valuable primary resource for assessing the presence of antibiotic-resistant genes, offering a useful tool for monitoring risks by public health authorities.

3.
Physiol Plant ; 175(6): e14062, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148238

RESUMEN

Agriculture is particularly impacted by global changes, drought being a main limiting factor of crop production. Here, we focus on pea (Pisum sativum), a model legume cultivated for its seed nutritional value. A water deficit (WD) was applied during its early reproductive phase, harvesting plant organs at two key developmental stages, either at the embryonic or the seed-filling stages. We combined phenotypic, physiological and transcriptome analyses to better understand the adaptive response to drought. First, we showed that apical growth arrest is a major phenotypic indicator of water stress. Sugar content was also greatly impacted, especially leaf fructose and starch contents. Our RNA-seq analysis identified 2001 genes regulated by WD in leaf, 3684 genes in root and 2273 genes in embryonic seed, while only 80 genes were regulated during seed-filling. Hence, a large transcriptional reprogramming occurred in response to WD in seeds during early embryonic stage, but no longer during the later stage of nutritional filling. Biological processes involved in transcriptional regulation, carbon transport and metabolism were greatly regulated by WD in both source and sink organs, as illustrated by the expression of genes encoding transcription factors, sugar transporters and enzymes of the starch synthesis pathway. We then looked at the transcriptomic changes during seed development, highlighting a transition from monosaccharide utilization at the embryonic stage to sucrose transport feeding the starch synthesis pathway at the seed-filling stage. Altogether, our study presents an integrative picture of sugar transport and metabolism in response to drought and during seed development at a genome-wide level.


Asunto(s)
Pisum sativum , Semillas , Pisum sativum/genética , Transporte Biológico , Perfilación de la Expresión Génica , Almidón/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
4.
ISME Commun ; 3(1): 18, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36882494

RESUMEN

The order Holosporales (Alphaproteobacteria) encompasses obligate intracellular bacterial symbionts of diverse Eukaryotes. These bacteria have highly streamlined genomes and can have negative fitness effects on the host. Herein, we present a comparative analysis of the first genome sequences of 'Ca. Hepatincola porcellionum', a facultative symbiont occurring extracellularly in the midgut glands of terrestrial isopods. Using a combination of long-read and short-read sequencing, we obtained the complete circular genomes of two Hepatincola strains and an additional metagenome-assembled draft genome. Phylogenomic analysis validated its phylogenetic position as an early-branching family-level clade relative to all other established Holosporales families associated with protists. A 16S rRNA gene survey revealed that this new family encompasses diverse bacteria associated with both marine and terrestrial host species, which expands the host range of Holosporales bacteria from protists to several phyla of the Ecdysozoa (Arthropoda and Priapulida). Hepatincola has a highly streamlined genome with reduced metabolic and biosynthetic capacities as well as a large repertoire of transmembrane transporters. This suggests that this symbiont is rather a nutrient scavenger than a nutrient provider for the host, likely benefitting from a nutrient-rich environment to import all necessary metabolites and precursors. Hepatincola further possesses a different set of bacterial secretion systems compared to protist-associated Holosporales, suggesting different host-symbiont interactions depending on the host organism.

5.
Environ Microbiol ; 25(3): 597-605, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36510838

RESUMEN

Our view of bacterial diversity has been dramatically impacted by cultivation-independent approaches such as metagenomics and 16S rRNA gene sequencing. Consequently, most bacterial phyla known to date are only documented by the presence of DNA sequences in databases and lack cultivated representatives. This bacterial majority that is yet-to-be cultivated, is forming the 'Microbial Dark Matter', (MDM) a consortium, whose ecology and biology remain largely unexplored. The Candidatus Dependentiae stands as one of many phyla within this MDM, found worldwide in various environments. Genomic evidence suggests ancestral, unusual adaptations of all Ca. Dependentiae to a host dependent lifestyle. In line with this, protists appear to be important for Ca. Dependentiae biology, as revealed by few recent studies, which enabled their growth in laboratory through host cultivation. However, the Ca. Dependentiae still remain to this day a poorly documented phylum. The present review aims to summarize the current knowledge accumulated on this often found, but rarely highlighted, bacterial phylum.


Asunto(s)
Bacterias , Genoma Bacteriano , ARN Ribosómico 16S/genética , Bacterias/genética , Ecología , Genómica , Metagenómica , Filogenia
6.
Nat Commun ; 13(1): 4104, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835784

RESUMEN

Encystment is a common stress response of most protists, including free-living amoebae. Cyst formation protects the amoebae from eradication and can increase virulence of the bacteria they harbor. Here, we mapped the global molecular changes that occur in the facultatively pathogenic amoeba Acanthamoeba castellanii during the early steps of the poorly understood process of encystment. By performing transcriptomic, proteomic, and phosphoproteomic experiments during encystment, we identified more than 150,000 previously undescribed transcripts and thousands of protein sequences absent from the reference genome. These results provide molecular details to the regulation of expected biological processes, such as cell proliferation shutdown, and reveal new insights such as a rapid phospho-regulation of sites involved in cytoskeleton remodeling and translation regulation. This work constitutes the first time-resolved molecular atlas of an encysting organism and a useful resource for further investigation of amoebae encystment to allow for a better control of pathogenic amoebae.


Asunto(s)
Acanthamoeba castellanii , Amoeba , Acanthamoeba castellanii/microbiología , Amoeba/fisiología , Bacterias , Proteómica , Virulencia
7.
Front Microbiol ; 13: 856908, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677904

RESUMEN

Protozoa play important roles in microbial communities, regulating populations via predation and contributing to nutrient cycling. While amoebae have been identified in acid rock drainage (ARD) systems, our understanding of their symbioses in these extreme environments is limited. Here, we report the first isolation of the amoeba Stemonitis from an ARD environment as well as the genome sequence and annotation of an associated bacterium, Dyella terrae strain Ely Copper Mine, from Ely Brook at the Ely Copper Mine Superfund site in Vershire, Vermont, United States. Fluorescent in situ hybridization analysis showed this bacterium colonizing cells of Stemonitis sp. in addition to being outside of amoebal cells. This amoeba-resistant bacterium is Gram-negative with a genome size of 5.36 Mbp and GC content of 62.5%. The genome of the D. terrae strain Ely Copper Mine encodes de novo biosynthetic pathways for amino acids, carbohydrates, nucleic acids, and lipids. Genes involved in nitrate (1) and sulfate (7) reduction, metal (229) and antibiotic resistance (37), and secondary metabolite production (6) were identified. Notably, 26 hydrolases were identified by RAST as well as other biomass degradation genes, suggesting roles in carbon and energy cycling within the microbial community. The genome also contains type IV secretion system genes involved in amoebae resistance, revealing how this bacterium likely survives predation from Stemonitis sp. This genome analysis and the association of D. terrae strain Ely Copper Mine with Stemonitis sp. provide insight into the functional roles of amoebae and bacteria within ARD environments.

8.
Microorganisms ; 9(1)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440837

RESUMEN

The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host's diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the "eco-holobiont" conceptualization of macroorganisms.

9.
J Exp Bot ; 71(22): 7301-7315, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32860502

RESUMEN

Plants live in close relationships with complex populations of microorganisms, including rhizobacterial species commonly referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are able to improve plant productivity, but the molecular mechanisms involved in this process remain largely unknown. Using an in vitro experimental system, the model plant Arabidopsis thaliana, and the well-characterized PGPR strain Pseudomonas simiae WCS417r (PsWCS417r), we carried out a comprehensive set of phenotypic and gene expression analyses. Our results show that PsWCS417r induces major transcriptional changes in sugar transport and in other key biological processes linked to plant growth, development, and defense. Notably, we identified a set of 13 genes of the SWEET and ERD6-like sugar transporter gene families whose expression is up- or down-regulated in response to seedling root inoculation with the PGPR or exposure to their volatile compounds. Using a reverse genetic approach, we demonstrate that SWEET11 and SWEET12 are functionally involved in the interaction and its plant growth-promoting effects, possibly by controlling the amount of sugar transported from the shoot to the root and to the PGPR. Altogether, our study reveals that PGPR-induced beneficial effects on plant growth and development are associated with changes in plant sugar transport.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Membrana , Raíces de Plantas/metabolismo , Pseudomonas/metabolismo , Azúcares
10.
Front Plant Sci ; 11: 124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174934

RESUMEN

Plants live in association with complex populations of microorganisms, including Plant Growth-Promoting Rhizobacteria (PGPR) that confer to plants an improved growth and enhanced stress tolerance. This large and diverse group includes endophytic bacteria that are able to colonize the internal tissues of plants. In the present study, we have isolated a nonrhizobial species from surface sterilized root nodules of Retama monosperma, a perennial leguminous species growing in poor and high salinity soils. Sequencing of its genome reveals this endophytic bacterium is a Bacillus megaterium strain (RmBm31) that possesses a wide range of genomic features linked to plant growth promotion. Furthermore, we show that RmBm31 is able to increase the biomass and positively modify the root architecture of seedlings of the model plant species Arabidopsis thaliana both in physical contact with its roots and via the production of volatile organic compounds. Lastly, we investigated the molecular mechanisms implicated in RmBm31 plant beneficial effects by carrying out a transcriptional analysis on a comprehensive set of phytohormone-responsive marker genes. Altogether, our results demonstrate that RmBm31 displays plant growth-promoting traits of potential interest for agricultural applications.

11.
Biotechnol Biofuels ; 13: 49, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32190114

RESUMEN

BACKGROUND: Isopods have colonized all environments, partly thanks to their ability to decompose the organic matter. Their enzymatic repertoire, as well as the one of their associated microbiota, has contributed to their colonization success. Together, these holobionts have evolved several interesting life history traits to degrade the plant cell walls, mainly composed of lignocellulose. It has been shown that terrestrial isopods achieve lignocellulose degradation thanks to numerous and diverse CAZymes provided by both the host and its microbiota. Nevertheless, the strategies for lignocellulose degradation seem more diversified in isopods, in particular in aquatic species which are the least studied. Isopods could be an interesting source of valuable enzymes for biotechnological industries of biomass conversion. RESULTS: To provide new features on the lignocellulose degradation in isopod holobionts, shotgun sequencing of 36 metagenomes of digestive and non-digestive tissues was performed from several populations of four aquatic and terrestrial isopod species. Combined to the 15 metagenomes of an additional species from our previous study, as well as the host transcriptomes, this large dataset allowed us to identify the CAZymes in both the host and the associated microbial communities. Analyses revealed the dominance of Bacteroidetes and Proteobacteria in the five species, covering 36% and 56% of the total bacterial community, respectively. The identification of CAZymes and new enzymatic systems for lignocellulose degradation, such as PULs, cellulosomes and LPMOs, highlights the richness of the strategies used by the isopods and their associated microbiota. CONCLUSIONS: Altogether, our results show that the isopod holobionts are promising models to study lignocellulose degradation. These models can provide new enzymes and relevant lignocellulose-degrading bacteria strains for the biotechnological industries of biomass conversion.

12.
Data Brief ; 29: 105166, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32071963

RESUMEN

The white-clawed crayfish (Austropotamobius pallipes) is an endangered species in Europe with limited genomic information. Despite its conservation status there is no transcriptomic data available for A. pallipes in public databases. The data here represents the first transcriptome profile of the white-clawed crayfish generated using Illumina stranded RNA sequencing. Pair-end reads were assembled de novo with three separate transcriptome assemblers (Trinity, RNABloom, and RNASpades) followed by transcript assembly reduction and gene reconstruction using the EvidentialGene pipeline. The transcriptome was functionally annotated using InterProScan and genes coding for carbohydrate-active enzymes were identified through the dbCAN2 server. Raw fastq reads and the final version of the transcriptome assembly have been deposited in the NCBI-SRA (SRR10549898) and NCBI-TSA (GICG01) databases.

13.
PLoS Biol ; 17(10): e3000438, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31600190

RESUMEN

Microbial endosymbiosis is widespread in animals, with major ecological and evolutionary implications. Successful symbiosis relies on efficient vertical transmission through host generations. However, when symbionts negatively affect host fitness, hosts are expected to evolve suppression of symbiont effects or transmission. Here, we show that sex chromosomes control vertical transmission of feminizing Wolbachia endosymbionts in the isopod Armadillidium nasatum. Theory predicts that the invasion of an XY/XX species by cytoplasmic sex ratio distorters is unlikely because it leads to fixation of the unusual (and often lethal or infertile) YY genotype. We demonstrate that A. nasatum X and Y sex chromosomes are genetically highly similar and that YY individuals are viable and fertile, thereby enabling Wolbachia spread in this XY-XX species. Nevertheless, we show that Wolbachia cannot drive fixation of YY individuals, because infected YY females do not transmit Wolbachia to their offspring, unlike XX and XY females. The genetic basis fits the model of a Y-linked recessive allele (associated with an X-linked dominant allele), in which the homozygous state suppresses Wolbachia transmission. Moreover, production of all-male progenies by infected YY females restores a balanced sex ratio at the host population level. This suggests that blocking of Wolbachia transmission by YY females may have evolved to suppress feminization, thereby offering a whole new perspective on the evolutionary interplay between microbial symbionts and host sex chromosomes.


Asunto(s)
Isópodos/genética , Cromosomas Sexuales , Procesos de Determinación del Sexo , Simbiosis/genética , Wolbachia/fisiología , Alelos , Animales , Femenino , Genotipo , Homocigoto , Isópodos/microbiología , Masculino , Modelos Genéticos , Carácter Cuantitativo Heredable , Razón de Masculinidad
14.
BMC Genomics ; 20(1): 462, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174468

RESUMEN

BACKGROUND: Isopods constitute a particular group of crustaceans that has successfully colonized all environments including marine, freshwater and terrestrial habitats. Their ability to use various food sources, especially plant biomass, might be one of the reasons of their successful spread. All isopods, which feed on plants and their by-products, must be capable of lignocellulose degradation. This complex composite is the main component of plants and is therefore an important nutrient source for many living organisms. Its degradation requires a large repertoire of highly specialized Carbohydrate-Active enZymes (called CAZymes) which are produced by the organism itself and in some cases, by its associated microbiota. The acquisition of highly diversified CAZymes could have helped isopods to adapt to their diet and to their environment, especially during land colonization. RESULTS: To test this hypothesis, isopod host CAZomes (i.e. the entire CAZyme repertoire) were characterized in marine, freshwater and terrestrial species through a transcriptomic approach. Many CAZymes were identified in 64 isopod transcriptomes, comprising 27 de novo datasets. Our results show that marine, freshwater and terrestrial isopods exhibit different CAZomes, illustrating different strategies for lignocellulose degradation. The analysis of variations of the size of CAZy families shows these are expanded in terrestrial isopods while they are contracted in aquatic isopods; this pattern is probably resulting from the evolution of the host CAZomes during the terrestrial adaptation of isopods. We show that CAZyme gene duplications and horizontal transfers can be involved in adaptive divergence between isopod CAZomes. CONCLUSIONS: Our characterization of the CAZomes in 64 isopods species provides new insights into the evolutionary processes that enabled isopods to conquer various environments, especially terrestrial ones.


Asunto(s)
Isópodos/enzimología , Lignina/metabolismo , Adaptación Fisiológica , Animales , Metabolismo de los Hidratos de Carbono/genética , Evolución Molecular , Isópodos/genética , Filogenia , Transcriptoma
15.
Mol Biol Evol ; 36(4): 727-741, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668787

RESUMEN

The terrestrial isopod Armadillidium vulgare is an original model to study the evolution of sex determination and symbiosis in animals. Its sex can be determined by ZW sex chromosomes, or by feminizing Wolbachia bacterial endosymbionts. Here, we report the sequence and analysis of the ZW female genome of A. vulgare. A distinguishing feature of the 1.72 gigabase assembly is the abundance of repeats (68% of the genome). We show that the Z and W sex chromosomes are essentially undifferentiated at the molecular level and the W-specific region is extremely small (at most several hundreds of kilobases). Our results suggest that recombination suppression has not spread very far from the sex-determining locus, if at all. This is consistent with A. vulgare possessing evolutionarily young sex chromosomes. We characterized multiple Wolbachia nuclear inserts in the A. vulgare genome, none of which is associated with the W-specific region. We also identified several candidate genes that may be involved in the sex determination or sexual differentiation pathways. The A. vulgare genome serves as a resource for studying the biology and evolution of crustaceans, one of the most speciose and emblematic metazoan groups.


Asunto(s)
Evolución Biológica , Genoma , Isópodos/genética , Cromosomas Sexuales , Procesos de Determinación del Sexo , Animales , Femenino , Masculino , Wolbachia/genética
16.
Microbiome ; 6(1): 162, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30223906

RESUMEN

BACKGROUND: Woodlice are recognized as keystone species in terrestrial ecosystems due to their role in the decomposition of organic matter. Thus, they contribute to lignocellulose degradation and nutrient cycling in the environment together with other macroarthropods. Lignocellulose is the main component of plants and is composed of cellulose, lignin and hemicellulose. Its digestion requires the action of multiple Carbohydrate-Active enZymes (called CAZymes), typically acting together as a cocktail with complementary, synergistic activities and modes of action. Some invertebrates express a few endogenous lignocellulose-degrading enzymes but in most species, an efficient degradation and digestion of lignocellulose can only be achieved through mutualistic associations with endosymbionts. Similar to termites, it has been suspected that several bacterial symbionts may be involved in lignocellulose degradation in terrestrial isopods, by completing the CAZyme repertoire of their hosts. RESULTS: To test this hypothesis, host transcriptomic and microbiome shotgun metagenomic datasets were obtained and investigated from the pill bug Armadillidium vulgare. Many genes of bacterial and archaeal origin coding for CAZymes were identified in the metagenomes of several host tissues and the gut content of specimens from both laboratory lineages and a natural population of A. vulgare. Some of them may be involved in the degradation of cellulose, hemicellulose, and lignin. Reconstructing a lignocellulose-degrading microbial community based on the prokaryotic taxa contributing relevant CAZymes revealed two taxonomically distinct but functionally redundant microbial communities depending on host origin. In parallel, endogenous CAZymes were identified from the transcriptome of the host and their expression in digestive tissues was demonstrated by RT-qPCR, demonstrating a complementary enzyme repertoire for lignocellulose degradation from both the host and the microbiome in A. vulgare. CONCLUSIONS: Our results provide new insights into the role of the microbiome in the evolution of terrestrial isopods and their adaptive radiation in terrestrial habitats.


Asunto(s)
Isópodos/metabolismo , Isópodos/microbiología , Lignina/metabolismo , Simbiosis , Animales , Bacterias/enzimología , Bacterias/genética , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Isópodos/fisiología , Filogenia , Suelo/parasitología
17.
Genes (Basel) ; 9(6)2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29890648

RESUMEN

In animals, sexual differences between males and females are usually determined by sex chromosomes. Alternatively, sex may also be determined by vertically transmitted intracellular microbial endosymbionts. The best known cytoplasmic sex manipulative endosymbiont is Wolbachia which can, for instance, feminize genetic males into phenotypic females in the terrestrial isopod Armadillidium vulgare. However, the molecular genetic basis of cytoplasmic sex determination is unknown. To identify candidate genes of feminization induced by Wolbachia strain wVulC from A. vulgare, we sequenced the genome of Wolbachia strain wCon from Cylisticus convexus, the most closely related known Wolbachia strain to wVulC that does not induce feminization, and compared it to the wVulC genome. Then, we performed gene expression profiling of the 216 resulting wVulC candidate genes throughout host developmental stages in A. vulgare and the heterologous host C. convexus. We identified a set of 35 feminization candidate genes showing differential expression during host sexual development. Interestingly, 27 of the 35 genes are present in the f element, which is a piece of a feminizing Wolbachia genome horizontally transferred into the nuclear genome of A. vulgare and involved in female sex determination. Assuming that the molecular genetic basis of feminization by Wolbachia and the f element is the same, the 27 genes are candidates for acting as master sex determination genes in A. vulgare females carrying the f element.

18.
BMC Biol ; 16(1): 43, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669603

RESUMEN

BACKGROUND: Oomycetes are a group of filamentous eukaryotic microorganisms that have colonized all terrestrial and oceanic ecosystems, and they include prominent plant pathogens. The Aphanomyces genus is unique in its ability to infect both plant and animal species, and as such exemplifies oomycete versatility in adapting to different hosts and environments. Dissecting the underpinnings of oomycete diversity provides insights into their specificity and pathogenic mechanisms. RESULTS: By carrying out genomic analyses of the plant pathogen A. euteiches and the crustacean pathogen A. astaci, we show that host specialization is correlated with specialized secretomes that are adapted to the deconstruction of the plant cell wall in A. euteiches and protein degradation in A. astaci. The A. euteiches genome is characterized by a large repertoire of small secreted protein (SSP)-encoding genes that are highly induced during plant infection, and are not detected in other oomycetes. Functional analysis revealed an SSP from A. euteiches containing a predicted nuclear-localization signal which shuttles to the plant nucleus and increases plant susceptibility to infection. CONCLUSION: Collectively, our results show that Aphanomyces host adaptation is associated with evolution of specialized secretomes and identify SSPs as a new class of putative oomycete effectors.


Asunto(s)
Aphanomyces/patogenicidad , Genómica/métodos , Aclimatación/genética , Aclimatación/fisiología , Animales , Aphanomyces/genética , Oomicetos/genética , Oomicetos/patogenicidad , Enfermedades de las Plantas/microbiología
19.
Sci Rep ; 8(1): 6948, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29700409

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

20.
Genetics ; 207(1): 269-280, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28679546

RESUMEN

The highly compact mitochondrial (mt) genome of terrestrial isopods (Oniscidae) presents two unusual features. First, several loci can individually encode two tRNAs, thanks to single nucleotide polymorphisms at anticodon sites. Within-individual variation (heteroplasmy) at these loci is thought to have been maintained for millions of years because individuals that do not carry all tRNA genes die, resulting in strong balancing selection. Second, the oniscid mtDNA genome comes in two conformations: a ∼14 kb linear monomer and a ∼28 kb circular dimer comprising two monomer units fused in palindrome. We hypothesized that heteroplasmy actually results from two genome units of the same dimeric molecule carrying different tRNA genes at mirrored loci. This hypothesis, however, contradicts the earlier proposition that dimeric molecules result from the replication of linear monomers-a process that should yield totally identical genome units within a dimer. To solve this contradiction, we used the SMRT (PacBio) technology to sequence mirrored tRNA loci in single dimeric molecules. We show that dimers do present different tRNA genes at mirrored loci; thus covalent linkage, rather than balancing selection, maintains vital variation at anticodons. We also leveraged unique features of the SMRT technology to detect linear monomers closed by hairpins and carrying noncomplementary bases at anticodons. These molecules contain the necessary information to encode two tRNAs at the same locus, and suggest new mechanisms of transition between linear and circular mtDNA. Overall, our analyses clarify the evolution of an atypical mt genome where dimerization counterintuitively enabled further mtDNA compaction.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Isópodos/genética , Animales , ARN de Transferencia/genética , Selección Genética , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...