RESUMEN
Piaractus mesopotamicus, is a fish usually farmed in semi-intensive systems with access to natural food and supplementary feed. This study evaluates effects of feed allowance on the productive performance, carbon turnover and proportions of nutrient (carbon) contribution of feed and natural food for the growth of pacu. Juvenile fish were stocked in fiberglass tanks and fed to 100, 75, 50, 25, 0% apparent satiety (ApS), with a practical, extruded (C4 photosynthetic pathway) feed in a randomized design trial (n=3); plankton production for simulated semi-intensive farming system condition was induced by chemical fertilization. A control treatment was set up in tanks devoid of natural food. Data on muscle stable carbon isotope ratios were used to study carbon turnover using a relative growth-based model. Low variation of the δ13C impaired fitting a turnover model curve for the 0 and 25 % ApS treatments. Fish of the 100% and 75% ApS treatments reached circa 95% and 82.85% of the carbon turnover, respectively. Extruded feed was the main nutrient source for the growth of pacu in the semi-intensive, simulated farming condition. The current study contributes to the knowledge of the relationship between feeding rates and carbon turnover rates in the pacu muscle.
Asunto(s)
Alimentación Animal , Isótopos de Carbono , Carbono , Animales , Alimentación Animal/análisis , Carbono/metabolismo , Carbono/análisis , Isótopos de Carbono/análisis , Characidae/fisiología , Characidae/crecimiento & desarrollo , Characidae/metabolismo , Acuicultura/métodos , Fenómenos Fisiológicos Nutricionales de los AnimalesRESUMEN
Background: The impact of extreme changes in weather patterns on the economy and human welfare is one of the biggest challenges our civilization faces. From anthropogenic contributions to climate change, reducing the impact of farming activities is a priority since it is responsible for up to 18% of global greenhouse gas emissions. To this end, we tested whether ruminal and stool microbiome components could be used as biomarkers for methane emission and feed efficiency in bovine by studying 52 Brazilian Nelore bulls belonging to two feed intervention treatment groups, that is, conventional and by-product-based diets. Results: We identified a total of 5,693 amplicon sequence variants (ASVs) in the Nelore bulls' microbiomes. A Differential abundance analysis with the ANCOM approach identified 30 bacterial and 15 archaeal ASVs as differentially abundant (DA) among treatment groups. An association analysis using Maaslin2 software and a linear mixed model indicated that bacterial ASVs are linked to the host's residual methane emission (RCH4) and residual feed intake (RFI) phenotype variation, suggesting their potential as targets for interventions or biomarkers. Conclusion: The feed composition induced significant differences in both abundance and richness of ruminal and stool microbial populations in ruminants of the Nelore breed. The industrial by-product-based dietary treatment applied to our experimental groups influenced the microbiome diversity of bacteria and archaea but not of protozoa. ASVs were associated with RCH4 emission and RFI in ruminal and stool microbiomes. While ruminal ASVs were expected to influence CH4 emission and RFI, the relationship of stool taxa, such as Alistipes and Rikenellaceae (gut group RC9), with these traits was not reported before and might be associated with host health due to their link to anti-inflammatory compounds. Overall, the ASVs associated here have the potential to be used as biomarkers for these complex phenotypes.
RESUMEN
BACKGROUND: Beef tenderness is a complex trait of economic importance for the beef industry. Understanding the epigenetic mechanisms underlying this trait may help improve the accuracy of breeding programs. However, little is known about epigenetic effects on Bos taurus muscle and their implications in tenderness, and no studies have been conducted in Bos indicus. RESULTS: Comparing methylation profile of Bos indicus skeletal muscle with contrasting beef tenderness at 14 days after slaughter, we identified differentially methylated cytosines and regions associated with this trait. Interestingly, muscle that became tender beef had higher levels of hypermethylation compared to the tough group. Enrichment analysis of predicted target genes suggested that differences in methylation between tender and tough beef may affect signal transduction pathways, among which G protein signaling was a key pathway. In addition, different methylation levels were found associated with expression levels of GNAS, PDE4B, EPCAM and EBF3 genes. The differentially methylated elements correlated with EBF3 and GNAS genes overlapped CpG islands and regulatory elements. GNAS, a complex imprinted gene, has a key role on G protein signaling pathways. Moreover, both G protein signaling pathway and the EBF3 gene regulate muscle homeostasis, relaxation, and muscle cell-specificity. CONCLUSIONS: We present differentially methylated loci that may be of interest to decipher the epigenetic mechanisms affecting tenderness. Supported by the previous knowledge about regulatory elements and gene function, the methylation data suggests EBF3 and GNAS as potential candidate genes and G protein signaling as potential candidate pathway associated with beef tenderness via methylation.
Asunto(s)
Metilación de ADN , Carne , Animales , Bovinos , Islas de CpG , Carne/análisis , Músculo Esquelético/metabolismo , Transducción de SeñalRESUMEN
Feed efficiency helps to reduce environmental impacts from livestock production, improving beef cattle profitability. We identified potential biomarkers (hub genes) for feed efficiency, by applying co-expression analysis in Longissimus thoracis RNA-Seq data from 180 Nelore steers. Six co-expression modules were associated with six feed efficiency-related traits (p-value ≤ 0.05). Within these modules, 391 hub genes were enriched for pathways as protein synthesis, muscle growth, and immune response. Trait-associated transcription factors (TFs) ELF1, ELK3, ETS1, FLI1, and TCF4, were identified with binding sites in at least one hub gene. Gene expression of CCDC80, FBLN5, SERPINF1, and OGN was associated with multiple feed efficiency-related traits (FDR ≤ 0.05) and were previously related to glucose homeostasis, oxidative stress, fat mass, and osteoblastogenesis, respectively. Potential regulatory elements were identified, integrating the hub genes with previous studies from our research group, such as the putative cis-regulatory elements (eQTLs) inferred as affecting the PCDH18 and SPARCL1 hub genes related to immune system and adipogenesis, respectively. Therefore, our analyses contribute to a better understanding of the biological mechanisms underlying feed efficiency in bovine and the hub genes disclosed can be used as biomarkers for feed efficiency-related traits in Nelore cattle.
RESUMEN
BACKGROUND: The success of different species of ruminants in the colonization of a diverse range of environments is due to their ability to digest and absorb nutrients from cellulose, a complex polysaccharide found in leaves and grass. Ruminants rely on a complex and diverse microbial community, or microbiota, in a unique compartment known as the rumen to break down this polysaccharide. Changes in microbial populations of the rumen can affect the host's development, health, and productivity. However, accessing the rumen is stressful for the animal. Therefore, the development and use of alternative sampling methods are needed if this technique is to be routinely used in cattle breeding. To this end, we tested if the fecal microbiome could be used as a proxy for the rumen microbiome due to its accessibility. We investigated the taxonomic composition, diversity and inter-relations of two different GIT compartments, rumen and feces, of 26 Nelore (Bos indicus) bulls, using Next Generation Sequencing (NGS) metabarcoding of bacteria, archaea and ciliate protozoa. RESULTS: We identified 4265 Amplicon Sequence Variants (ASVs) from bacteria, 571 from archaea, and 107 from protozoa, of which 143 (96 bacteria and 47 archaea) were found common between both microbiomes. The most prominent bacterial phyla identified were Bacteroidetes (41.48%) and Firmicutes (56.86%) in the ruminal and fecal microbiomes, respectively, with Prevotella and Ruminococcaceae UCG-005 the most relatively abundant genera identified in each microbiome. The most abundant archaeal phylum identified was Euryarchaeota, of which Methanobrevibacter gottschalkii, a methanogen, was the prevalent archaeal species identified in both microbiomes. Protozoa were found exclusively identified in the rumen with Bozasella/Triplumaria being the most frequent genus identified. Co-occurrence among ruminal and fecal ASVs reinforces the relationship of microorganisms within a biological niche. Furthermore, the co-occurrence of shared archaeal ASVs between microbiomes indicates a dependency of the predominant fecal methanogen population on the rumen population. CONCLUSIONS: Co-occurring microorganisms were identified within the rumen and fecal microbiomes, which revealed a strong association and inter-dependency between bacterial, archaeal and protozoan populations of the same microbiome. The archaeal ASVs identified as co-occurring between GIT compartments corresponded to the methanogenic genera Methanobrevibacter and Methanosphaera and represented 26.34% of the overall archaeal sequencesdiversity in the rumen and 42.73% in feces. Considering that these archaeal ASVs corresponded to a significant part of the overall diversity of both microbiomes, which is much higher if one includes the interactions of these co-occurring with other rumen archaea ASVs, we suggest that fecal methanogens could be used as a proxy of ruminal methanogens.
RESUMEN
Fatty acid (FA) content affects the sensorial and nutritional value of meat and plays a significant role in biological processes such as adipogenesis and immune response. It is well known that, in beef, the main FAs associated with these biological processes are oleic acid (C18:1 cis9, OA) and conjugated linoleic acid (CLA-c9t11), which may have beneficial effects on metabolic diseases such as type 2 diabetes and obesity. Here, we performed differential expression and co-expression analyses, weighted gene co-expression network analysis (WGCNA) and partial correlation with information theory (PCIT), to uncover the complex interactions between miRNAs and mRNAs expressed in skeletal muscle associated with FA content. miRNA and mRNA expression data were obtained from skeletal muscle of Nelore cattle that had extreme genomic breeding values for OA and CLA. Insulin and MAPK signaling pathways were identified by WGCNA as central pathways associated with both of these fatty acids. Co-expression network analysis identified bta-miR-33a/b, bta-miR-100, bta-miR-204, bta-miR-365-5p, bta-miR-660, bta-miR-411a, bta-miR-136, bta-miR-30-5p, bta-miR-146b, bta-let-7a-5p, bta-let-7f, bta-let-7, bta-miR 339, bta-miR-10b, bta-miR 486, and the genes ACTA1 and ALDOA as potential regulators of fatty acid synthesis. This study provides evidence and insights into the molecular mechanisms and potential target genes involved in fatty acid content differences in Nelore beef cattle, revealing new candidate pathways of phenotype modulation that could positively benefit beef production and human consumption.
RESUMEN
Residual Feed Intake (RFI) is an economically relevant trait in beef cattle. Among the molecular regulatory mechanisms, microRNAs (miRNAs) are an important dimension in post-transcriptional regulation and have been associated with different biological pathways. Here, we performed differential miRNAs expression and weighted gene co-expression network analyses (WGCNA) to better understand the complex interactions between miRNAs and mRNAs expressed in bovine skeletal muscle and liver. MiRNA and mRNA expression data were obtained from Nelore steers that were genetically divergent for RFI (N = 10 [low RFI or feed efficient]; N = 10 [high RFI or feed inefficient]). Differentially expressed and hub miRNAs such as bta-miR-486, bta-miR-7, bta-miR15a, bta-miR-21, bta-miR 29, bta- miR-30b, bta-miR-106b, bta-miR-199a-3p, bta-miR-204, and bta-miR 296 may have a potential role in variation of RFI. Functional enrichment analysis of differentially expressed (DE) miRNA's target genes and miRNA-mRNA correlated modules revealed that insulin, lipid, immune system, oxidative stress and muscle development signaling pathways might potentially be involved in RFI in this population. Our study identified DE miRNAs, miRNA - mRNA regulatory networks and hub miRNAs related to RFI. These findings suggest a possible role of miRNAs in regulation of RFI, providing new insights into the potential molecular mechanisms that control feed efficiency in Nelore cattle.
Asunto(s)
Alimentación Animal/análisis , Bovinos/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Mensajero/metabolismo , Transcriptoma , Animales , Bovinos/fisiología , Biología Computacional , Conducta Alimentaria , Hígado/metabolismo , Músculo Esquelético/metabolismo , Fenotipo , ARN Mensajero/genética , Transducción de SeñalRESUMEN
BACKGROUND: Integration of high throughput DNA genotyping and RNA-sequencing data allows for the identification of genomic regions that control gene expression, known as expression quantitative trait loci (eQTL), on a whole genome scale. Intramuscular fat (IMF) content and carcass composition play important roles in metabolic and physiological processes in mammals because they influence insulin sensitivity and consequently prevalence of metabolic diseases such as obesity and type 2 diabetes. However, limited information is available on the genetic variants and mechanisms associated with IMF deposition in mammals. Thus, our hypothesis was that eQTL analyses could identify putative regulatory regions and transcription factors (TFs) associated with intramuscular fat (IMF) content traits. RESULTS: We performed an integrative eQTL study in skeletal muscle to identify putative regulatory regions and factors associated with intramuscular fat content traits. Data obtained from skeletal muscle samples of 192 animals was used for association analysis between 461,466 SNPs and the transcription level of 11,808 genes. This yielded 1268 cis- and 10,334 trans-eQTLs, among which we identified nine hotspot regions that each affected the expression of > 119 genes. These putative regulatory regions overlapped with previously identified QTLs for IMF content. Three of the hotspots respectively harbored the transcription factors USF1, EGR4 and RUNX1T1, which are known to play important roles in lipid metabolism. From co-expression network analysis, we further identified modules significantly correlated with IMF content and associated with relevant processes such as fatty acid metabolism, carbohydrate metabolism and lipid metabolism. CONCLUSION: This study provides novel insights into the link between genotype and IMF content as evident from the expression level. It thereby identifies genomic regions of particular importance and associated regulatory factors. These new findings provide new knowledge about the biological processes associated with genetic variants and mechanisms associated with IMF deposition in mammals.
Asunto(s)
Sitios de Carácter Cuantitativo/genética , Factores de Transcripción/metabolismo , Animales , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/fisiología , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Factores de Transcripción/genéticaRESUMEN
ABSTRACT Knowledge on fasting heat production (HEf) of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR) of pacu (17 - 1,050 g) at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10) for pacu (2.06) shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1) from body mass (W, kg) and water temperature (T, °C), and can be used in bioenergetical models for the species.
Asunto(s)
Animales , Temperatura , Ayuno/metabolismo , Termogénesis/fisiología , Tamaño Corporal/fisiología , Characidae/metabolismo , Agua Dulce , Consumo de Oxígeno/fisiología , Valores de Referencia , Modelos Lineales , Metabolismo Energético/fisiología , Characidae/anatomía & histologíaRESUMEN
Knowledge on fasting heat production (HEf) of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR) of pacu (17 - 1,050 g) at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10) for pacu (2.06) shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1) from body mass (W, kg) and water temperature (T, °C), and can be used in bioenergetical models for the species.
Asunto(s)
Tamaño Corporal/fisiología , Characidae/metabolismo , Ayuno/metabolismo , Agua Dulce , Temperatura , Termogénesis/fisiología , Animales , Characidae/anatomía & histología , Metabolismo Energético/fisiología , Modelos Lineales , Consumo de Oxígeno/fisiología , Valores de ReferenciaRESUMEN
This study investigated the influence of feed intake on superovulatory response and embryo production of Nelore heifers. Pubertal heifers were kept in a feedlot and were submitted to the same diets, but with different levels of feed consumption: High (1.7 M; n = 20) or Low (0.7 M; n = 19) feed intake. Heifers in the 1.7 M treatment consumed 170% (2.6% of body weight [BW] in dry matter) and the 0.7 M heifers ate 70% (1.1% of BW in dry matter) of a maintenance diet. After 7 wk on these diets, heifers were treated with eight decreasing doses of follicle-stimulating hormone (FSH) given every 12 h, totaling 133 mg Folltropin (Folltropin-V; Bioniche Animal Health, Canada) per heifer. Seven d after AI, heifers had their uteri flushed and embryos were recovered and graded according to the International Embryo Technology Society standards. Data were analyzed using the GLIMMIX procedure of SAS and results are presented as least-squares means ± SEM (P < 0.05). At the onset of the FSH treatment (Day 0 of the protocol), 1.7 M heifers had greater body condition score (BCS), BW and serum insulin concentrations than 0.7 M heifers (4.1 ± 0.1 vs. 3.0 ± 0.1; 462.5 ± 10.1 vs. 382.7 ± 10.4 kg; and 14.3 ± 1.7 vs. 3.5 ± 0.8 µIU/mL, respectively). The 0.7 M heifers had more follicles ≥6 mm at the time of the last FSH (Day 7; 47.9 ± 6.4 vs. 23.5 ± 4.3 follicles), related to a better follicle superstimulatory response to FSH. Similarly, 0.7 M heifers had more corpora lutea at the time of embryo collection (33.6 ± 1.4 vs. 15.7 ± 0.9) than the 1.7 M heifers, which resulted in greater number of recovered embryos and ova (9.9 ± 0.7 vs. 6.7 ± 0.6) and viable embryos (5.3 ± 0.5 vs. 3.8 ± 0.4), despite having similar proportions of viable embryos (â¼62%). A negative correlation between circulating insulin and follicle superstimulatory response to FSH was observed (r = -0.68). Therefore, we conclude that high feed intake, for a long period of time, compromised the superovulatory response and embryo production potential of Bos indicus heifers possibly related to the elevation in circulating insulin.
Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Dieta/veterinaria , Superovulación , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Composición Corporal , Peso Corporal , Técnicas de Cultivo de Embriones , Femenino , Fertilización In Vitro , Recolección de Tejidos y ÓrganosRESUMEN
The objective of this study was to identify species of yeasts in samples of high moisture corn (HMC) and corn silage (CS) collected from farms throughout the United States. Samples were plated and colonies were isolated for identification using DNA analysis. Randomly selected colonies were also identified by fatty acid methyl esters (FAME) and by physiological substrate profiling (ID 32C). For CS, Candida ethanolica, Saccharomyces bulderi, Pichia anomala, Kazachstania unispora, and Saccharomyces cerevisiae were the predominant yeasts. Pichia anomala, Issatchenkia orientalis, S. cerevisiae, and Pichia fermentans were the prevalent species in HMC. The 3 identification methods were in agreement at the species level for 16.6% of the isolates and showed no agreement for 25.7%. Agreement in species identification between ID 32C and DNA analysis, FAME and ID 32C, and FAME and DNA analysis was 41.1, 14.4, and 2.2%, respectively. Pichia anomala and I. orientalis were able to grow on lactic acid, whereas S. cerevisiae metabolized sugars (galactose, sucrose, and glucose) but failed to use lactic acid. The yeast diversity in CS and HMC varied due to type of feed and location. Differences in species assignments were seen among methods, but identification using substrate profiling generally corresponded with that based on DNA analysis. These findings provide information about the species that may be expected in silages, and this knowledge may lead to interventions that control unwanted yeasts.
Asunto(s)
Ensilaje/microbiología , Zea mays , Animales , Fermentación , Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Estados Unidos , Levaduras/genéticaRESUMEN
Residual feed intake (RFI), a measure of feed efficiency (FE), is defined as the difference between the observed and the predictable feed intake considering size and growth of the animal. It is extremely important to beef production systems due to its impact on the allocation of land areas to alternative agricultural production, animal methane emissions, food demand and cost of production. Global differential gene expression analysis between high and low RFI groups (HRFI and LRFI: less and more efficient, respectively) revealed 73 differentially expressed (DE) annotated genes in Longissimus thoracis (LT) muscle of Nelore steers. These genes are involved in the overrepresented pathways Metabolism of Xenobiotics by Cytochrome P450 and Butanoate and Tryptophan Metabolism. Among the DE transcripts were several proteins related to mitochondrial function and the metabolism of lipids. Our findings indicate that observed gene expression differences are primarily related to metabolic processes underlying oxidative stress. Genes involved in the metabolism of xenobiotics and antioxidant mechanisms were primarily down-regulated, while genes responsible for lipid oxidation and ketogenesis were up-regulated in HRFI group. By using LT muscle, this study reinforces our previous findings using liver tissue and reveals new genes and likely tissue-specific regulators playing key-roles in these processes.
Asunto(s)
Alimentación Animal , Bovinos/genética , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Animales , Digestión , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Perfilación de la Expresión Génica , Estudios de Asociación Genética/veterinaria , Flujo Genético , Genoma , Lípidos/química , Masculino , Metano/química , Estrés Oxidativo , Oxígeno/química , Fenotipo , Análisis de Secuencia de ARN , Xenobióticos/químicaRESUMEN
BACKGROUND: Lipids are a class of molecules that play an important role in cellular structure and metabolism in all cell types. In the last few decades, it has been reported that long-chain fatty acids (FAs) are involved in several biological functions from transcriptional regulation to physiological processes. Several fatty acids have been both positively and negatively implicated in different biological processes in skeletal muscle and other tissues. To gain insight into biological processes associated with fatty acid content in skeletal muscle, the aim of the present study was to identify differentially expressed genes (DEGs) and functional pathways related to gene expression regulation associated with FA content in cattle. RESULTS: Skeletal muscle transcriptome analysis of 164 Nellore steers revealed no differentially expressed genes (DEGs, FDR 10%) for samples with extreme values for linoleic acid (LA) or stearic acid (SA), and only a few DEGs for eicosapentaenoic acid (EPA, 5 DEGs), docosahexaenoic acid (DHA, 4 DEGs) and palmitic acid (PA, 123 DEGs), while large numbers of DEGs were associated with oleic acid (OA, 1134 DEGs) and conjugated linoleic acid cis9 trans11 (CLA-c9t11, 872 DEGs). Functional annotation and functional enrichment from OA DEGs identified important genes, canonical pathways and upstream regulators such as SCD, PLIN5, UCP3, CPT1, CPT1B, oxidative phosphorylation mitochondrial dysfunction, PPARGC1A, and FOXO1. Two important genes associated with lipid metabolism, gene expression and cancer were identified as DEGs between animals with high and low CLA-c9t11, specifically, epidermal growth factor receptor (EGFR) and RNPS. CONCLUSION: Only two out of seven classes of molecules of FA studied were associated with large changes in the expression profile of skeletal muscle. OA and CLA-c9t11 content had significant effects on the expression level of genes related to important biological processes associated with oxidative phosphorylation, and cell growth, survival, and migration. These results contribute to our understanding of how some FAs modulate metabolism and may have protective health function.
Asunto(s)
Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Músculo Esquelético/metabolismo , Transcriptoma , Animales , Bovinos , Calidad de los Alimentos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Redes y Vías Metabólicas , Ácido Oléico/metabolismo , Fenotipo , Carne Roja/normas , Reproducibilidad de los ResultadosRESUMEN
Repeated measures from the same individual have been analyzed by using repeatability and finite dimension models under univariate or multivariate analyses. However, in the last decade, the use of random regression models for genetic studies with longitudinal data have become more common. Thus, the aim of this research was to estimate genetic parameters for body weight of four experimental chicken lines by using univariate random regression models. Body weight data from hatching to 84 days of age (n = 34,730) from four experimental free-range chicken lines (7P, Caipirão da ESALQ, Caipirinha da ESALQ and Carijó Barbado) were used. The analysis model included the fixed effects of contemporary group (gender and rearing system), fixed regression coefficients for age at measurement, and random regression coefficients for permanent environmental effects and additive genetic effects. Heterogeneous variances for residual effects were considered, and one residual variance was assigned for each of six subclasses of age at measurement. Random regression curves were modeled by using Legendre polynomials of the second and third orders, with the best model chosen based on the Akaike Information Criterion, Bayesian Information Criterion, and restricted maximum likelihood. Multivariate analyses under the same animal mixed model were also performed for the validation of the random regression models. The Legendre polynomials of second order were better for describing the growth curves of the lines studied. Moderate to high heritabilities (h(2) = 0.15 to 0.98) were estimated for body weight between one and 84 days of age, suggesting that selection for body weight at all ages can be used as a selection criteria. Genetic correlations among body weight records obtained through multivariate analyses ranged from 0.18 to 0.96, 0.12 to 0.89, 0.06 to 0.96, and 0.28 to 0.96 in 7P, Caipirão da ESALQ, Caipirinha da ESALQ, and Carijó Barbado chicken lines, respectively. Results indicate that genetic gain for body weight can be achieved by selection. Also, selection for body weight at 42 days of age can be maintained as a selection criterion.
Asunto(s)
Peso Corporal/genética , Pollos/fisiología , Crianza de Animales Domésticos , Animales , Pollos/genética , Femenino , Masculino , Modelos Genéticos , Agricultura Orgánica , Análisis de RegresiónRESUMEN
BACKGROUND: Nelore is the major beef cattle breed in Brazil with more than 130 million heads. Genome-wide association studies (GWAS) are often used to associate markers and genomic regions to growth and meat quality traits that can be used to assist selection programs. An alternative methodology to traditional GWAS that involves the construction of gene network interactions, derived from results of several GWAS is the AWM (Association Weight Matrices)/PCIT (Partial Correlation and Information Theory). With the aim of evaluating the genetic architecture of Brazilian Nelore cattle, we used high-density SNP genotyping data (~770,000 SNP) from 780 Nelore animals comprising 34 half-sibling families derived from highly disseminated and unrelated sires from across Brazil. The AWM/PCIT methodology was employed to evaluate the genes that participate in a series of eight phenotypes related to growth and meat quality obtained from this Nelore sample. RESULTS: Our results indicate a lack of structuring between the individuals studied since principal component analyses were not able to differentiate families by its sires or by its ancestral lineages. The application of the AWM/PCIT methodology revealed a trio of transcription factors (comprising VDR, LHX9 and ZEB1) which in combination connected 66 genes through 359 edges and whose biological functions were inspected, some revealing to participate in biological growth processes in literature searches. CONCLUSIONS: The diversity of the Nelore sample studied is not high enough to differentiate among families neither by sires nor by using the available ancestral lineage information. The gene networks constructed from the AWM/PCIT methodology were a useful alternative in characterizing genes and gene networks that were allegedly influential in growth and meat quality traits in Nelore cattle.
Asunto(s)
Bovinos/crecimiento & desarrollo , Bovinos/genética , Redes Reguladoras de Genes , Carne Roja , Animales , Brasil , Estudios de Asociación Genética , Pleiotropía Genética , Genotipo , Desequilibrio de Ligamiento , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genéticaRESUMEN
This study evaluated the use of cooled semen in a fixed-time artificial insemination (FTAI) program compared with frozen-thawed semen to improve pregnancy rates in beef cattle. Ejaculates of three bulls were collected and divided into two treatments: (1) frozen-thawed semen and (2) cooled semen. Egg-yolk extender without glycerol was used for the cooled semen treatment. Straws (25×106 spermatozoa) were submitted to cooling for preservation at 5°C for 24h, after which FTAI was performed. Nelore cows (n=838) submitted to FTAI were randomly inseminated using frozen-thawed semen or cooled semen. There was a 20% increase in the pregnancy per AI (P AI-1) using cooled semen compared with frozen-thawed semen (59.9±4.7 vs 49.4±5.0%; P<0.005). There was no difference in P AI-1 among the bulls (P=0.40). The frozen-thawed semen had fewer functional spermatozoa than did the cooled semen when evaluated by sperm motility (61.7 vs 81.0%), slow thermoresistance test (41.7 vs 66.7%) and hypoosmotic swelling test (38.3 vs 53.7%; P<0.05). The percentage of sperm abnormalities did not differ between the freeze-thawing and cooling processes (18.6 vs 22.1%; P>0.05). Because there was less damage to spermatozoa and improvement in P AI-1, the use of cooled semen instead of frozen-thawed semen is an interesting approach to increase reproductive efficiency in cattle submitted to a FTAI protocol.
Asunto(s)
Criopreservación/veterinaria , Inseminación Artificial/veterinaria , Preservación de Semen/veterinaria , Semen , Animales , Bovinos , Femenino , Masculino , Embarazo , Carne Roja , Motilidad Espermática , EspermatozoidesRESUMEN
Intramuscular fat (IMF) content is related to insulin resistance, which is an important prediction factor for disorders, such as cardiovascular disease, obesity and type 2 diabetes in human. At the same time, it is an economically important trait, which influences the sensorial and nutritional value of meat. The deposition of IMF is influenced by many factors such as sex, age, nutrition, and genetics. In this study Nellore steers (Bos taurus indicus subspecies) were used to better understand the molecular mechanisms involved in IMF content. This was accomplished by identifying differentially expressed genes (DEG), biological pathways and putative regulatory factors. Animals included in this study had extreme genomic estimated breeding value (GEBV) for IMF. RNA-seq analysis, gene set enrichment analysis (GSEA) and co-expression network methods, such as partial correlation coefficient with information theory (PCIT), regulatory impact factor (RIF) and phenotypic impact factor (PIF) were utilized to better understand intramuscular adipogenesis. A total of 16,101 genes were analyzed in both groups (high (H) and low (L) GEBV) and 77 DEG (FDR 10%) were identified between the two groups. Pathway Studio software identified 13 significantly over-represented pathways, functional classes and small molecule signaling pathways within the DEG list. PCIT analyses identified genes with a difference in the number of gene-gene correlations between H and L group and detected putative regulatory factors involved in IMF content. Candidate genes identified by PCIT include: ANKRD26, HOXC5 and PPAPDC2. RIF and PIF analyses identified several candidate genes: GLI2 and IGF2 (RIF1), MPC1 and UBL5 (RIF2) and a host of small RNAs, including miR-1281 (PIF). These findings contribute to a better understanding of the molecular mechanisms that underlie fat content and energy balance in muscle and provide important information for the production of healthier beef for human consumption.