Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 12(13)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37443819

RESUMEN

The activation of the mineralocorticoid (MR) and glucocorticoid (GR) receptors on peripheral sensory neurons seems to modify pain perception through both direct non-genomic and indirect genomic pathways. These distinct subpopulations of sensory neurons are not known for peripheral human nerves. Therefore, we examined MR and GR on subpopulations of sensory neurons in sectioned human and rat peripheral nerves. Real-time PCR (RT-PCR) and double immunofluorescence confocal analysis of MR and GR with the neuronal markers PGP9.5, neurofilament 200 (NF200), and the potential pain signaling molecules CGRP, Nav1.8, and TRPV1 were performed in human and rat nerve tissue. We evaluated mechanical hyperalgesia after intrathecal administration of GR and MR agonists. We isolated MR- and GR-specific mRNA from human peripheral nerves using RT-PCR. Our double immunofluorescence analysis showed that the majority of GR colocalized with NF200 positive, myelinated, mechanoreceptive A-fibers and, to a lesser extent, with peripheral peptidergic CGRP-immunoreactive sensory nerve fibers in humans and rats. However, the majority of MR colocalized with CGRP in rat as well as human nerve tissue. Importantly, there was an abundant colocalization of MR with the pain signaling molecules TRPV1, CGRP, and Nav1.8 in human as well as rat nerve tissue. The intrathecal application of the GR agonist reduced, and intrathecal administration of an MR agonist increased, mechanical hyperalgesia in rats. Altogether, these findings support a translational approach in mammals that aims to explain the modulation of sensory information through MR and GR activation. Our findings show a significant overlap between humans and rats in MR and GR expression in peripheral sensory neurons.


Asunto(s)
Hiperalgesia , Mineralocorticoides , Humanos , Ratas , Animales , Mineralocorticoides/metabolismo , Hiperalgesia/metabolismo , Receptores de Glucocorticoides/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Pierna , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismo , Biología , Mamíferos/metabolismo
2.
Front Neuroanat ; 16: 902738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213610

RESUMEN

Background: Emerging evidences indicate that glucocorticoid receptors (GR) play a regulatory role in cardiac function, particularly with regard to the autonomic nervous system. Therefore, this study aimed to demonstrate the expression and the precise anatomical location of GR in relation to the parasympathetic and sympathetic innervations of the heart. Methods: The present study used tissue samples from rat heart atria to perform conventional reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, and double immunofluorescence confocal analysis of GR with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP) as well as the mineralocorticoid receptor (MR). Results: Double immunofluorescence labeling revealed that GRs were co-expressed with VAChT in parasympathetic principal neuronal somata and nerve terminals innervating atrium. Also, GR colocalized with the sympathetic neuronal marker TH in a cluster of small intensely fluorescent (SIF) cells, on intracardiac nerve terminals and in the atrial myocardium. GR immunoreactivity was scarcely identified on CGRP-immunoreactive sensory nerve terminals. Approximately 20% of GR immunoreactive neuronal somata co-localized with MR. Finally, conventional RT-PCR and Western blot confirmed the presence of GR and MR in rat heart atria. Conclusion: This study provides evidence for the existence of GR predominantly on cardiac parasympathetic neurons and TH-immunoreactive SIF cells suggesting a functional role of cardiac GR on cardiovascular function by modulation of the cardiac autonomic nervous system.

3.
Front Pharmacol ; 13: 873169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847039

RESUMEN

In previous studies, upregulation of myocardial opioid receptors as well as the precursors of their endogenous ligands were detected in the failing heart due to chronic volume overload. Moreover, opioid receptor blockade by naltrexone improved left ventricular function. In parallel, inflammatory processes through cytokines have been confirmed to play an important role in the pathogenesis of different forms of heart failure. Thus, the present study examined the systemic and myocardial inflammatory response to chronic volume overload and its modulation by chronic naltrexone therapy. Chronic volume overload was induced in male Wistar rats by applying an infrarenal aortocaval fistula (ACF) for 28 days during which the selective opioid receptor antagonist naltrexone (n = 6) or vehicle (n = 6) were administered via a subcutaneously implanted Alzet minipump. The ultrastructural, morphometric and hemodynamic characterization of ACF animals were performed using an intraventricular conductance catheter in vivo and electron microscopy in vitro. Co-localization of mu-, delta- and kappa-opioid receptor subtypes (MOR, DOR, and KOR respectively) with the voltage gated L-type Ca2+ channel (Cav1.2), the ryanodine receptor (RyR), and mitochondria in cardiomyocytes as well as IL-6, IL-12, TNF-alpha, and Malondialdehyde (MDA) were determined using double immunofluorescence confocal microscopy, RT-PCR and ELISA, respectively. In rat left ventricular myocardium, three opioid receptor subtypes MOR, DOR, and KOR colocalized with Cav1.2, RyR and mitochondria suggesting a modulatory role of the excitation-contraction coupling. In rats with ACF-induced volume overload, signs of heart failure and myocardial ultrastructural damage, chronic naltrexone therapy improved cardiac function and reversed the systemic and myocardial inflammatory cytokine expression as well as lipid peroxidation. In conclusion, antagonism of the cardiodepressive effects of the myocardial opioid system does not only improve left ventricular function but also blunts the inflammatory response and lipid peroxidation.

4.
J Neuroinflammation ; 19(1): 148, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705992

RESUMEN

BACKGROUND: Under inflammatory conditions, the activation of corticotropin-releasing factor (CRF) receptor has been shown to inhibit pain through opioid peptide release from immune cells or neurons. CRF's effects on human and animal pain modulation depend, however, on the distribution of its receptor subtypes 1 and 2 (CRF-R1 and CRF-R2) along the neuraxis of pain transmission. The objective of this study is to investigate the respective role of each CRF receptor subtype on centrally administered CRF-induced antinociception during inflammatory pain. METHODS: The present study investigated the role of intracerebroventricular (i.c.v.) CRF receptor agonists on nociception and the contribution of cerebral CRF-R1 and/or CRF-R2 subtypes in an animal model of Freund's complete adjuvant (FCA)-induced hind paw inflammation. Methods used included behavioral experiments, immunofluorescence confocal analysis, and reverse transcriptase-polymerase chain reaction. RESULTS: Intracerebroventricular, but systemically inactive, doses of CRF elicited potent, dose-dependent antinociceptive effects in inflammatory pain which were significantly antagonized by i.c.v. CRF-R1-selective antagonist NBI 27914 (by approximately 60%) but less by CRF-R2-selective antagonist K41498 (by only 20%). In line with these findings, i.c.v. administration of CRF-R1 agonist stressin I produced superior control of inflammatory pain over CRF-R2 agonist urocortin-2. Intriguingly, i.c.v. opioid antagonist naloxone significantly reversed the CRF as well as CRF-R1 agonist-elicited pain inhibition. Consistent with existing evidence of high CRF concentrations in brain areas such as the thalamus, hypothalamus, locus coeruleus, and periaqueductal gray following its i.c.v. administration, double-immunofluorescence confocal microscopy demonstrated primarily CRF-R1-positive neurons that expressed opioid peptides in these pain-relevant brain areas. Finally, PCR analysis confirmed the predominant expression of the CRF-R1 over CRF-R2 in representative brain areas such as the hypothalamus. CONCLUSION: Taken together, these findings suggest that CRF-R1 in opioid-peptide-containing brain areas plays an important role in the modulation of inflammatory pain and may be a useful therapeutic target for inflammatory pain control.


Asunto(s)
Hormona Liberadora de Corticotropina , Receptores de Hormona Liberadora de Corticotropina , Animales , Encéfalo/metabolismo , Péptidos Opioides/metabolismo , Dolor/tratamiento farmacológico
5.
Mol Neurobiol ; 58(11): 5459-5472, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34331656

RESUMEN

Corticotropin-releasing factor (CRF) orchestrates our body's response to stressful stimuli. Pain is often stressful and counterbalanced by activation of CRF receptors along the nociceptive pathway, although the involvement of the CRF receptor subtypes 1 and/or 2 (CRF-R1 and CRF-R2, respectively) in CRF-induced analgesia remains controversial. Thus, the aim of the present study was to examine CRF-R1 and CRF-R2 expression within the spinal cord of rats with Freund's complete adjuvant-induced unilateral inflammation of the hind paw using reverse transcriptase polymerase chain reaction, Western blot, radioligand binding, and immunofluorescence confocal analysis. Moreover, the antinociceptive effects of intrathecal (i.t.) CRF were measured by paw pressure algesiometer and their possible antagonism by selective antagonists for CRF-R1 and/or CRF-R2 as well as for opioid receptors. Our results demonstrated a preference for the expression of CRF-R2 over CRF-R1 mRNA, protein, binding sites and immunoreactivity in the dorsal horn of the rat spinal cord. Consistently, CRF as well as CRF-R2 agonists elicited potent dose-dependent antinociceptive effects which were antagonized by the i.t. CRF-R2 selective antagonist K41498, but not by the CRF-R1 selective antagonist NBI35965. In addition, i.t. applied opioid antagonist naloxone dose-dependently abolished the i.t. CRF- as well as CRF-R2 agonist-elicited inhibition of somatic pain. Importantly, double immunofluorescence confocal microscopy of the spinal dorsal horn showed CRF-R2 on enkephalin (ENK)-containing inhibitory interneurons in close opposition of incoming mu-opioid receptor-immunoreactive nociceptive neurons. CRF-R2 was, however, not seen on pre- or on postsynaptic sensory neurons of the spinal cord. Taken together, these findings suggest that i.t. CRF or CRF-R2 agonists inhibit somatic inflammatory pain predominantly through CRF-R2 receptors located on spinal enkephalinergic inhibitory interneurons which finally results in endogenous opioid-mediated pain inhibition.


Asunto(s)
Dolor/fisiopatología , Receptores de Hormona Liberadora de Corticotropina/fisiología , Médula Espinal/química , Acenaftenos/farmacología , Proteínas Anfibias/farmacología , Animales , Artritis Experimental/fisiopatología , Hormona Liberadora de Corticotropina/farmacología , Encefalinas/fisiología , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Interneuronas/fisiología , Masculino , Naloxona/farmacología , Nocicepción/fisiología , Hormonas Peptídicas/farmacología , Células del Asta Posterior/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Wistar , Receptores de Hormona Liberadora de Corticotropina/biosíntesis , Receptores de Hormona Liberadora de Corticotropina/genética , Médula Espinal/fisiopatología , Urocortinas/farmacología
6.
Cardiovasc Drugs Ther ; 35(4): 733-743, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33484395

RESUMEN

PURPOSE: Myocardial opioid receptors were demonstrated in animals and humans and seem to colocalize with membranous and sarcolemmal calcium channels of the excitation-contraction coupling in the left ventricle (LV). Therefore, this study investigated whether blockade of the cardiac opioid system by naltrexone would affect cardiac function and neurohumoral parameters in Wistar rats with volume overload-induced heart failure. METHODS: Volume overload in Wistar rats was induced by an aortocaval fistula (ACF). Left ventricular cardiac opioid receptors were identified by immunohistochemistry and their messenger ribonucleic acid (mRNA) as well as their endogenous ligand mRNA quantified by real-time polymerase chain reaction (RT-PCR). Following continuous delivery of either the opioid receptor antagonist naltrexone or vehicle via minipumps (n = 5 rats each), hemodynamic and humoral parameters were assessed 28 days after ACF induction. Sham-operated animals served as controls. RESULTS: In ACF rats mu-, delta-, and kappa-opioid receptors colocalized with voltage-gated L-type Ca2+ channels in left ventricular cardiomyocytes. Chronic naltrexone treatment of ACF rats reduced central venous pressure (CVP) and left ventricular end-diastolic pressure (LVEDP), and improved systolic and diastolic left ventricular functions. Concomitantly, rat brain natriuretic peptide (rBNP-45) and angiotensin-2 plasma concentrations which were elevated during ACF were significantly diminished following naltrexone treatment. In parallel, chronic naltrexone significantly reduced mu-, delta-, and kappa-opioid receptor mRNA, while it increased the endogenous opioid peptide mRNA compared to controls. CONCLUSION: Opioid receptor blockade by naltrexone leads to improved LV function and decreases in rBNP-45 and angiotensin-2 plasma levels. In parallel, naltrexone resulted in opioid receptor mRNA downregulation and an elevated intrinsic tone of endogenous opioid peptides possibly reflecting a potentially cardiodepressant effect of the cardiac opioid system during volume overload.


Asunto(s)
Miocitos Cardíacos/efectos de los fármacos , Naltrexona/farmacocinética , Angiotensina II/sangre , Animales , Modelos Animales de Enfermedad , Pruebas de Función Cardíaca , Antagonistas de Narcóticos/farmacocinética , Proteínas del Tejido Nervioso/metabolismo , Ratas , Ratas Wistar , Receptores Opioides/metabolismo , Resultado del Tratamiento , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Intoxicación por Agua/metabolismo , Intoxicación por Agua/fisiopatología
7.
Front Neuroanat ; 15: 802359, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087382

RESUMEN

Recent interest has focused on the mineralocorticoid receptor (MR) and its impact on the myocardium and the performance of the heart. However, there is a lack of evidence about MR expression and its endogenous ligand aldosterone synthesis with specific regard to the intrinsic cardiac nervous system. Therefore, we looked for evidence of MR and aldosterone in sympathetic and parasympathetic neurons of intracardiac ganglia. Tissue samples from rat heart atria were subjected to conventional reverse-transcriptase polymerase chain reaction (PCR), Western blot, and double immunofluorescence confocal analysis of MR, corticosterone-inactivating enzyme 11ß-hydroxysteroid-dehydrogenase-2 (11ß-HSD2), aldosterone, and its processing enzyme CYP11B2 together with the neuronal markers vesicular acetylcholine transporter (VAChT) and tyrosine hydroxylase (TH). Our results demonstrated MR, 11ß-HSD2, and CYP11B2 specific mRNA and protein bands in rat heart atria. Double immunofluorescence labeling revealed coexpression of MR immunoreactivity with VAChT in large diameter parasympathetic principal neurons. In addition, MR immunoreactivity was identified in TH-immunoreactive small intensely fluorescent (SIF) cells and in nearby VAChT- and TH-immunoreactive nerve terminals. Interestingly, the aldosterone and its synthesizing enzyme CYP11B2 and 11ß-HSD2 colocalized in MR- immunoreactive neurons of intracardiac ganglia. Overall, this study provides first evidence for the existence of not only local expression of MR, but also of 11ß-HSD2 and aldosterone with its processing enzyme CYP11B2 in the neurons of the cardiac autonomic nervous system, suggesting a possible modulatory role of the mineralocorticoid system on the endogenous neuronal activity on heart performance.

8.
Mediators Inflamm ; 2020: 4301072, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33273889

RESUMEN

A complex inflammatory process mediated by proinflammatory cytokines and prostaglandins commonly occurs in the synovial tissue of patients with joint trauma (JT), osteoarthritis (OA), and rheumatoid arthritis (RA). This study systematically investigated the distinct expression profile of prostaglandin E2 (PGE2), its processing enzymes (COX-2), and microsomal PGES-1 (mPGES-1) as well as the corresponding prostanoid receptor subtypes (EP1-4) in representative samples of synovial tissue from these patients (JT, OA, and RA). Quantitative TaqMan®-PCR and double immunofluorescence confocal microscopy of synovial tissue determined the abundance and exact immune cell types expressing these target molecules. Our results demonstrated that PGE2 and its processing enzymes COX-2 and mPGES-1 were highest in the synovial tissue of RA, followed by the synovial tissue of OA and JT patients. Corresponding prostanoid receptor, subtypes EP3 were highly expressed in the synovium of RA, followed by the synovial tissue of OA and JT patients. These proinflammatory target molecules were distinctly identified in JT patients mostly in synovial granulocytes, in OA patients predominantly in synovial macrophages and fibroblasts, whereas in RA patients mainly in synovial fibroblasts and plasma cells. Our findings show a distinct expression profile of EP receptor subtypes and PGE2 as well as the corresponding processing enzymes in human synovium that modulate the inflammatory process in JT, OA, and RA patients.


Asunto(s)
Inflamación/metabolismo , Artropatías/metabolismo , Receptores de Prostaglandina E/metabolismo , Anciano , Artritis Reumatoide/metabolismo , Biopsia , Ciclooxigenasa 2/biosíntesis , Citocinas/metabolismo , Dinoprostona/biosíntesis , Femenino , Fibroblastos/metabolismo , Humanos , Ligandos , Macrófagos/metabolismo , Masculino , Microscopía Confocal , Persona de Mediana Edad , Osteoartritis/metabolismo , Prostaglandina-E Sintasas/biosíntesis , Membrana Sinovial/metabolismo
9.
J Neuroinflammation ; 17(1): 183, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532285

RESUMEN

BACKGROUND: Recently, mineralocorticoid receptors (MR) were identified in peripheral nociceptive neurons, and their acute antagonism was responsible for immediate and short-lasting (non-genomic) antinociceptive effects. The same neurons were shown to produce the endogenous ligand aldosterone by the enzyme aldosterone synthase. METHODS: Here, we investigate whether endogenous aldosterone contributes to inflammation-induced hyperalgesia via the distinct genomic regulation of specific pain signaling molecules in an animal model of Freund's complete adjuvant (FCA)-induced hindpaw inflammation. RESULTS: Chronic intrathecal application of MR antagonist canrenoate-K (over 4 days) attenuated nociceptive behavior in rats with FCA hindpaw inflammation suggesting a tonic activation of neuronal MR by endogenous aldosterone. Consistently, double immunofluorescence confocal microscopy showed abundant co-localization of MR with several pain signaling molecules such as TRPV1, CGRP, Nav1.8, and trkA whose enhanced expression of mRNA and proteins during inflammation was downregulated following i.t. canrenoate-K. More importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by continuous intrathecal delivery of a specific aldosterone synthase inhibitor prevented the inflammation-induced enhanced transcriptional expression of TRPV1, CGRP, Nav1.8, and trkA and subsequently attenuated nociceptive behavior. Evidence for such a genomic effect of endogenous aldosterone was supported by the demonstration of an enhanced nuclear translocation of MR in peripheral sensory dorsal root ganglia (DRG) neurons. CONCLUSION: Taken together, chronic inhibition of local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons may contribute to long-lasting downregulation of specific pain signaling molecules and may, thus, persistently reduce inflammation-induced hyperalgesia.


Asunto(s)
Aldosterona/metabolismo , Hiperalgesia/metabolismo , Inflamación/metabolismo , Dolor/metabolismo , Animales , Citocromo P-450 CYP11B2/antagonistas & inhibidores , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacología , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Ratas , Ratas Wistar , Receptores de Mineralocorticoides/efectos de los fármacos , Receptores de Mineralocorticoides/metabolismo
10.
Anesthesiology ; 132(4): 867-880, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32011337

RESUMEN

BACKGROUND: Recent emerging evidence suggests that extra-adrenal synthesis of aldosterone occurs (e.g., within the failing heart and in certain brain areas). In this study, the authors investigated evidence for a local endogenous aldosterone production through its key processing enzyme aldosterone synthase within peripheral nociceptive neurons. METHODS: In male Wistar rats (n = 5 to 8 per group) with Freund's complete adjuvant hind paw inflammation, the authors examined aldosterone, aldosterone synthase, and mineralocorticoid receptor expression in peripheral sensory neurons using quantitative reverse transcriptase-polymerase chain reaction, Western blot, immunohistochemistry, and immunoprecipitation. Moreover, the authors explored the nociceptive behavioral changes after selective mineralocorticoid receptor antagonist, canrenoate-K, or specific aldosterone synthase inhibitor application. RESULTS: In rats with Freund's complete adjuvant-induced hind paw inflammation subcutaneous and intrathecal application of mineralocorticoid receptor antagonist, canrenoate-K, rapidly and dose-dependently attenuated nociceptive behavior (94 and 48% reduction in mean paw pressure thresholds, respectively), suggesting a tonic activation of neuronal mineralocorticoid receptors by an endogenous ligand. Indeed, aldosterone immunoreactivity was abundant in peptidergic nociceptive neurons of dorsal root ganglia and colocalized predominantly with its processing enzyme aldosterone synthase and mineralocorticoid receptors. Moreover, aldosterone and its synthesizing enzyme were significantly upregulated in peripheral sensory neurons under inflammatory conditions. The membrane mineralocorticoid receptor consistently coimmunoprecipitated with endogenous aldosterone, confirming a functional link between mineralocorticoid receptors and its endogenous ligand. Importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by a specific aldosterone synthase inhibitor attenuated nociceptive behavior after hind paw inflammation (a 32% reduction in paw pressure thresholds; inflammation, 47 ± 2 [mean ± SD] vs. inflammation + aldosterone synthase inhibitor, 62 ± 2). CONCLUSIONS: Local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons contributes to ongoing mechanical hypersensitivity during local inflammation via intrinsic activation of neuronal mineralocorticoid receptors.


Asunto(s)
Citocromo P-450 CYP11B2/biosíntesis , Hiperalgesia/metabolismo , Dimensión del Dolor/métodos , Células Receptoras Sensoriales/metabolismo , Adyuvantes Inmunológicos/toxicidad , Aldosterona/biosíntesis , Animales , Adyuvante de Freund/toxicidad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Dimensión del Dolor/efectos de los fármacos , Estimulación Física/efectos adversos , Ratas , Ratas Wistar , Células Receptoras Sensoriales/efectos de los fármacos
11.
Front Pharmacol ; 10: 347, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024314

RESUMEN

Reduction of the opioid analgesia in diabetic neuropathic pain (DNP) results from µ-opioid receptor (MOR) reserve reduction. Herein, we examined the antinociceptive and antiallodynic actions of a novel opioid agonist 14-O-methymorphine-6-O-sulfate (14-O-MeM6SU), fentanyl and morphine in rats with streptozocin-evoked DNP of 9-12 weeks following their systemic administration. The antinociceptive dose-response curve of morphine but not of 14-O-MeM6SU or fentanyl showed a significant right-shift in diabetic compared to non-diabetic rats. Only 14-O-MeM6SU produced antiallodynic effects in doses matching antinociceptive doses obtained in non-diabetic rats. Co-administered naloxone methiodide (NAL-M), a peripherally acting opioid receptor antagonist failed to alter the antiallodynic effect of test compounds, indicating the contribution of central opioid receptors. Reduction in spinal MOR binding sites and loss in MOR immunoreactivity of nerve terminals in the spinal cord and dorsal root ganglia in diabetic rats were observed. G-protein coupling assay revealed low efficacy character for morphine and high efficacy character for 14-O-MeM6SU or fentanyl at spinal or supraspinal levels (E max values). Furthermore, at the spinal level only 14-O-MeM6SU showed equal efficacy in G-protein activation in tissues of diabetic- and non-diabetic animals. Altogether, the reduction of spinal opioid receptors concomitant with reduced analgesic effect of morphine may be circumvented by using high efficacy opioids, which provide superior analgesia over morphine. In conclusion, the reduction in the analgesic action of opioids in DNP might be a consequence of MOR reduction, particularly in the spinal cord. Therefore, developing opioids of high efficacy might provide analgesia exceeding that of currently available opioids.

12.
Brain Res ; 1712: 180-187, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30771315

RESUMEN

Evidence is accumulating that activation of mineralocorticoid (MR) and glucocorticoid (GR) receptors on peripheral sensory neurons modulates pain sensation. While the expression and exact anatomical localization of MR and GR in the various subpopulations of peripheral sensory neurons has been shown in animals, it is still unknown for the human skin. Therefore, we aimed to identify MR and GR mRNA and protein as well as the exact subpopulations of sensory neurons in human versus rat skin. Tissue samples from rat and human skin were subjected to RT-PCR, Western blot and double immunofluorescence confocal analysis of MR and GR with the neuronal markers calcitonin gene-related peptide (CGRP), neurofilament 200 (NF200) and tyrosine hydroxylase (TH). Using RT-PCR we were able to isolate MR as well as GR specific transcripts from human skin. Consistently, Western blot analysis identified MR- as well as GR- specific protein bands at the expected molecular weights of 110 and 87 kD, respectively. Double immunofluorescence confocal microscopy of human skin revealed that MR predominantly colocalized with calcitonin-gene-related peptide (CGRP)-immunoreactive (IR) nociceptive neurons - similar to rat skin - underscoring a pivotal role for MR in the modulation of pain. The majority of GR-immmunoreactivity was localized in peripheral peptidergic CGRP-IR sensory nerve fibers, but in addition on TH-IR sympathetic postganglionic, and NF200-IR myelinated mechanoreceptive nerve fibers, both within human and rat skin. Moreover, GR but not MR were localized in keratinocytes of the epidermal layer of human and rat skin. Overall, our results indicate considerable overlap in sensory neuron expression of MR and GR in humans and rats endorsing a common systems approach in mammals that may modulate the transmission of sensory information by MR and GR activation.


Asunto(s)
Nociceptores/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Adulto , Anciano , Animales , Péptido Relacionado con Gen de Calcitonina , Femenino , Ganglios Espinales/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Mineralocorticoides/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Nociceptores/fisiología , Dolor/metabolismo , Ratas , Ratas Wistar , Receptores de Glucocorticoides/análisis , Receptores de Mineralocorticoides/análisis , Células Receptoras Sensoriales/metabolismo , Piel/metabolismo
13.
Neurochem Res ; 43(6): 1250-1257, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29725918

RESUMEN

Opioid analgesics devoid of central side effects are unmet medical need in the treatment of acute pain (e.g. post-operative pain). Recently, we have reported on 14-O-methylmorphine-6-O-sulfate (14-O-MeM6SU), a novel opioid agonist of high efficacy producing peripheral antinociception in subchronic inflammatory pain in certain doses. The present study focused on the antinociceptive effect of 14-O-MeM6SU compared to morphine in formalin test of an early/acute (Phase I) and late/tonic (Phase II) pain phases. Subcutaneous 14-O-MeM6SU (253-1012 nmol/kg) and morphine (3884-31075 nmol/kg) dose dependently reduced the pain behaviors of both phases. Co-administered naloxone methiodide (NAL-M), a peripherally acting opioid antagonist, abolished the antinociceptive effect of 506 nmol/kg 14-O-MeM6SU. On the other hand, the effects of 14-O-MeM6SU (1012 nmol/kg) and morphine (15538 nmol/kg) were only partially affected by NAL-M, indicating the contribution of CNS to antinociception. Locally injected test compounds into formalin treated paws caused antinociception in both phases. Locally effective doses of test compounds were also injected into contralateral paws. Morphine showed effects in both phases, 14-O-MeM6SU in certain doses failed to produce antinociception in either phase. A NAL-M reversible systemic dose of 14-O-MeM6SU and the lowest systemic effective dose of morphine were evaluated for their sedative effects following isoflurane-induced sleeping (righting reflex). In contrast to morphine, 14-O-MeM6SU in certain antinociceptive doses showed no impact on sleeping time. These data highlight that high efficacy opioids of limited CNS penetration in certain doses mitigate somatic and inflammatory pain by targeting MOR at the periphery.


Asunto(s)
Dolor Agudo/tratamiento farmacológico , Analgésicos Opioides/administración & dosificación , Analgésicos/administración & dosificación , Codeína/análogos & derivados , Dimensión del Dolor/efectos de los fármacos , Dolor Agudo/metabolismo , Dolor Agudo/psicología , Analgésicos/química , Analgésicos Opioides/química , Animales , Codeína/administración & dosificación , Codeína/química , Relación Dosis-Respuesta a Droga , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inyecciones Subcutáneas , Masculino , Dimensión del Dolor/métodos , Ratas , Ratas Wistar
14.
Anesthesiology ; 128(4): 796-809, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29356757

RESUMEN

BACKGROUND: In naive rats, corticosteroids activate neuronal membrane-bound glucocorticoid and mineralocorticoid receptors in spinal cord and periphery to modulate nociceptive behavior by nongenomic mechanisms. Here we investigated inflammation-induced changes in neuronal versus glial glucocorticoid and mineralocorticoid receptors and their ligand-mediated nongenomic impact on mechanical nociception in rats. METHODS: In Wistar rats (n = 5 to 7/group) with Freund's complete adjuvant hind paw inflammation, we examined glucocorticoid and mineralocorticoid receptor expression in spinal cord and peripheral sensory neurons versus glial using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot, immunohistochemistry, and radioligand binding. Moreover, we explored the expression of mineralocorticoid receptors protecting enzyme 11-betahydroxysteroid dehydrogenase type 2 as well as the nociceptive behavioral changes after glucocorticoid and mineralocorticoid receptors agonist or antagonist application. RESULTS: Hind paw inflammation resulted in significant upregulation of glucocorticoid receptors in nociceptive neurons of spinal cord (60%) and dorsal root ganglia (15%) as well as mineralocorticoid receptors, while corticosteroid plasma concentrations remained unchanged. Mineralocorticoid (83 ± 16 fmol/mg) but not glucocorticoid (104 ± 20 fmol/mg) membrane binding sites increased twofold in dorsal root ganglia concomitant with upregulated 11-betahydroxysteroid dehydrogenase type 2 (43%). Glucocorticoid and mineralocorticoid receptor expression in spinal microglia and astrocytes was small. Importantly, glucocorticoid receptor agonist dexamethasone or mineralocorticoid receptor antagonist canrenoate-K rapidly and dose-dependently attenuated nociceptive behavior. Isobolographic analysis of the combination of both drugs showed subadditive but not synergistic or additive effects. CONCLUSIONS: The enhanced mechanical sensitivity of inflamed hind paws accompanied with corticosteroid receptor upregulation in spinal and peripheral sensory neurons was attenuated immediately after glucocorticoid receptor agonist and mineralocorticoid receptor antagonist administration, suggesting acute nongenomic effects consistent with detected membrane-bound corticosteroid receptors.


Asunto(s)
Glucocorticoides/farmacología , Nociceptores/metabolismo , Dimensión del Dolor/métodos , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Analgésicos/farmacología , Animales , Adyuvante de Freund/toxicidad , Miembro Posterior/efectos de los fármacos , Miembro Posterior/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacología , Nociceptores/efectos de los fármacos , Dimensión del Dolor/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Mineralocorticoides/agonistas
15.
J Control Release ; 268: 352-363, 2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29054370

RESUMEN

The mechanisms of axonal trafficking and membrane targeting are well established for sodium channels, which are the principle targets for perineurally applied local anaesthetics. However, they have not been thoroughly investigated for G protein coupled receptors such as mu-opioid receptors (MOR). Focusing on these axonal mechanisms, we found that axonal MOR functionality is quite distinct in two different pain states, i.e. hindpaw inflammation and nerve injury. We observed axonal membrane MOR binding and functional G protein coupling exclusively at sites of CCI nerve injury. Moreover at these axonal membrane sites, MOR exhibited extensive co-localization with the membrane proteins SNAP and Na/K-ATPase as well as NGF-dependent enhanced lipid rafts and L1CAM anchoring proteins. Silencing endogenous L1CAM with intrathecal L1CAM specific siRNA, disrupting lipid rafts with the perineurial cholesterol-sequestering agent MßCD, as well as suppressing NGF receptor activation with the perineurial NGF receptor inhibitor K252a abrogated MOR axonal membrane integration, functional coupling, and agonist-elicited antinociception at sites of nerve injury. These findings suggest that local conceptual changes resulting from nerve injury are required for the establishment of functional axonal membrane MOR. Axonal integration and subsequent accessibility of functionally coupled MOR are of great relevance particularly for patients suffering from severe pain due to nerve injury or tumour infiltration.


Asunto(s)
Axones/metabolismo , Neuralgia/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacología , Animales , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Fentanilo/farmacología , Adyuvante de Freund , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Neuralgia/tratamiento farmacológico , Ratas Wistar , Nervio Ciático/lesiones
16.
PLoS One ; 12(9): e0184161, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28934226

RESUMEN

Heart failure has emerged as a disease with significant public health implications. Following progression of heart failure, heart and liver dysfunction are frequently combined in hospitalized patients leading to increased morbidity and mortality. Here, we investigated the underlying pathological alterations in liver injury following heart failure. Heart failure was induced using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. Sham operated and ACF rats were compared for their morphometric and hemodynamic data, for histopathological and ultrastructural changes in the liver as well as differences in the expression of apoptotic factors. ACF-induced heart failure is associated with light microscopic signs of apparent congestion of blood vessels, increased apoptosis and breakdown of hepatocytes and inflammatory cell inifltration were observed. The glycogen content depletion associated with the increased hepatic fibrosis, lipid globule formation was observed in ACF rats. Moreover, cytoplasmic organelles are no longer distinguishable in many ACF hepatocytes with degenerated fragmented rough endoplasmic reticulum, shrunken mitochondria and heavy cytoplasm vacuolization. ACF is associated with the upregulation of the hepatic TUNEL-positive cells and proapoptotic factor Bax protein concomitant with the mitochondrial leakage of cytochrome C into the cell cytoplasm and the transfer of activated caspase 3 from the cytoplasm into the nucleus indicating intrinsic apoptotic events. Taken together, the results demonstrate that ACF-induced congestive heart failure causes liver injury which results in hepatocellular apoptotic cell death mediated by the intrinsic pathway of mitochondrial cytochrome C leakage and subsequent transfer of activated caspase 3 into to the nucleus to initiate overt DNA fragmentation and cell death.


Asunto(s)
Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Hígado/lesiones , Volumen Sistólico , Transporte Activo de Núcleo Celular , Animales , Apoptosis , Caspasa 3/metabolismo , Núcleo Celular/metabolismo , Citocromos c/metabolismo , Citosol/metabolismo , Activación Enzimática , Regulación de la Expresión Génica , Insuficiencia Cardíaca/fisiopatología , Hepatocitos/ultraestructura , Hígado/metabolismo , Hígado/patología , Masculino , Mitocondrias/enzimología , Miocardio/patología , Proteínas del Tejido Nervioso/sangre , Tamaño de los Órganos , Ratas , Ratas Wistar , Proteína X Asociada a bcl-2/metabolismo
17.
Oxid Med Cell Longev ; 2017: 6894040, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28831296

RESUMEN

BACKGROUND: This study investigated histopathological changes and apoptotic factors that may be involved in the renal damage caused by congestive heart failure in a rat model of infrarenal aortocaval fistula (ACF). METHODS: Heart failure was induced using a modified approach of ACF in male Wistar rats. Sham-operated controls and ACF rats were characterized by their morphometric and hemodynamic parameters and investigated for their histopathological, ultrastructural, and apoptotic factor changes in the kidney. RESULTS: ACF-induced heart failure is associated with histopathological signs of congestion and glomerular and tubular atrophy, as well as nuclear and cellular degeneration in the kidney. In parallel, overexpression of proapoptotic Bax protein, release of cytochrome C from the outer mitochondrial membrane into cell cytoplasm, and nuclear transfer of activated caspase 3 indicate apoptotic events. This was confirmed by electron microscopic findings of apoptotic signs in the kidney such as swollen mitochondria and degenerated nuclei in renal tubular cells. CONCLUSIONS: This study provides morphological evidence of renal injury during heart failure which may be due to caspase-mediated apoptosis via overexpression of proapoptotic Bax protein, subsequent mitochondrial cytochrome C release, and final nuclear transfer of activated caspase 3, supporting the notion of a cardiorenal syndrome.


Asunto(s)
Insuficiencia Cardíaca/complicaciones , Enfermedades Renales/fisiopatología , Animales , Apoptosis , Insuficiencia Cardíaca/patología , Hemodinámica , Masculino , Ratas , Ratas Wistar
18.
Mediators Inflamm ; 2017: 9243736, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28316377

RESUMEN

Synovial injury and healing are complex processes including catabolic effects by proinflammatory cytokines and anabolic processes by anti-inflammatory mediators. Here we examined the expression of pro- versus anti-inflammatory mediators in synovium of patients with diagnostic arthroscopy (control), joint trauma (JT), osteoarthritis (OA), and rheumatoid arthritis (RA). Synovial samples from these patients were subjected to RT-PCR and double immunofluorescence confocal microscopy of pro- and anti-inflammatory mediators as well as immune cell markers. Interestingly, pro- and anti-inflammatory mediators were expressed predominantly in granulocytes in patients with JT and in macrophages, lymphocytes, and plasma cells in patients with OA and RA. Interestingly, parallel to the severity of inflammation, proinflammatory mediators IL-1ß, TNF-α, and 5-LOX specific mRNA as well as immunoreactive (IR) cells were significantly more abundant in patients with RA and JT than in those with OA. However, anti-inflammatory mediators 15-LOX, FPR2, and IL-10 specific mRNA as well as IR cells were significantly more abundant in patients with OA than in those with JT and RA. These findings show that upregulation of proinflammatory mediators contributes to the predominantly catabolic inflammatory process in JT and RA synovium, whereas upregulation of anabolic anti-inflammatory mediators counteracts inflammation resulting in the inferior inflammatory process in OA synovium.


Asunto(s)
Artritis Reumatoide/metabolismo , Osteoartritis/metabolismo , Membrana Sinovial/metabolismo , Heridas y Lesiones/metabolismo , Anciano , Anciano de 80 o más Años , Araquidonato 5-Lipooxigenasa/genética , Artritis Reumatoide/inmunología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Interleucina-10/genética , Interleucina-1beta/genética , Masculino , Persona de Mediana Edad , Osteoartritis/inmunología , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Membrana Sinovial/inmunología , Factor de Necrosis Tumoral alfa/genética , Heridas y Lesiones/inmunología
19.
Neuropharmacology ; 111: 1-13, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27558347

RESUMEN

Glucocorticoids were long believed to primarily function through cytosolic glucocorticoid receptor (GR) activation and subsequent classical genomic pathways. Recently, however, evidence has emerged that suggests the presence of rapid non-genomic GR-dependent signaling pathways within the brain, though their existence in spinal and peripheral nociceptive neurons remains elusive. In this paper, we aim to systemically identify GR within the spinal cord and periphery, to verify their putative membrane location and to characterize possible G protein coupling and pain modulating properties. Double immunofluorescence confocal microscopy revealed that GR predominantly localized in peripheral peptidergic and non-peptidergic nociceptive C- and Aδ-neurons and existed only marginally in myelinated mechanoreceptive and proprioreceptive neurons. Within the spinal cord, GR predominantly localized in incoming presynaptic nociceptive neurons, in pre- and postsynaptic structures of the dorsal horn, as well as in microglia. GR saturation binding revealed that these receptors are linked to the cell membrane of sensory neurons and, upon activation, they trigger membrane targeted [35S]GTPγS binding, indicating G protein coupling to a putative receptor. Importantly, subcutaneous dexamethasone immediately and dose-dependently attenuated acute nociceptive behavior elicited in an animal model of formalin-induced pain hypersensitivity compared to naive rats. Overall, this study provides firm evidence for a novel neuronal mechanism of GR agonists that is rapid, non-genomic, dependent on membrane binding and G protein coupling, and acutely modulates nociceptive behavior, thus unraveling a yet unconsidered mechanism of pain relief.


Asunto(s)
Ganglios Espinales/metabolismo , Proteínas de la Membrana/metabolismo , Nociceptores/metabolismo , Dolor/metabolismo , Receptores de Glucocorticoides/metabolismo , Médula Espinal/metabolismo , Animales , Masculino , Mecanorreceptores , Neuroglía/metabolismo , Nocicepción/fisiología , Dolor/fisiopatología , Umbral del Dolor , Unión Proteica , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Glucocorticoides/fisiología , Nervio Ciático/metabolismo , Piel/metabolismo
20.
J Pharmacol Exp Ther ; 359(1): 171-81, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27435180

RESUMEN

Growing data support peripheral opioid antinociceptive effects, particularly in inflammatory pain models. Here, we examined the antinociceptive effects of subcutaneously administered, recently synthesized 14-O-methylmorphine-6-O-sulfate (14-O-MeM6SU) compared with morphine-6-O-sulfate (M6SU) in a rat model of inflammatory pain induced by an injection of complete Freund's adjuvant and in a mouse model of visceral pain evoked by acetic acid. Subcutaneous doses of 14-O-MeM6SU and M6SU up to 126 and 547 nmol/kg, respectively, produced significant and subcutaneous or intraplantar naloxone methiodide (NAL-M)-reversible antinociception in inflamed paws compared with noninflamed paws. Neither of these doses significantly affected thiobutabarbital-induced sleeping time or rat pulmonary parameters. However, the antinociceptive effects of higher doses were only partially reversed by NAL-M, indicating contribution of the central nervous system. In the mouse writhing test, 14-O-MeM6SU was more potent than M6SU after subcutaneous or intracerebroventricular injections. Both displayed high subcutaneous/intracerebroventricular ED50 ratios. The antinociceptive effects of subcutaneous 14-O-MeM6SU and M6SU up to 136 and 3043 nmol/kg, respectively, were fully antagonized by subcutaneous NAL-M. In addition, the test compounds inhibited mouse gastrointestinal transit in antinociceptive doses. Taken together, these findings suggest that systemic administration of the novel compound 14-O-MeM6SU similar to M6SU in specific dose ranges shows peripheral antinociception in rat and mouse inflammatory pain models without central adverse effects. These findings apply to male animals and must be confirmed in female animals. Therefore, titration of systemic doses of opioid compounds with limited access to the brain might offer peripheral antinociception of clinical importance.


Asunto(s)
Analgésicos/administración & dosificación , Analgésicos/farmacología , Morfina/administración & dosificación , Morfina/farmacología , Analgésicos/química , Analgésicos/uso terapéutico , Animales , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/fisiología , Masculino , Ratones , Morfina/química , Morfina/uso terapéutico , Dolor/tratamiento farmacológico , Ratas , Ratas Wistar , Respiración/efectos de los fármacos , Tiopental/análogos & derivados , Tiopental/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA