Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
Biomedicines ; 12(10)2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39457729

RESUMEN

The journal retracts the article, "Nanonutraceuticals: Anti-Cancer Activity and Improved Safety of Chemotherapy by Costunolide and Its Nanoformulation against Colon and Breast Cancer" [...].

3.
Endocr Res ; 49(4): 251-254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884586

RESUMEN

BACKGROUND: The existence of a functional relationship between a certain thyroid hormone analogue and cancer cell radioresistance has been shown by Leith and coworkers. The hormone analogue with relevance to malignant cells' radioresistance is tetraiodothyroacetic acid (tetrac). Tetrac is the deaminated derivative of L-thyroxine (T4), the principal product of the thyroid gland. Preclinical studies demonstrated that tetrac and chemically modified tetrac (CMT), e.g. a fluorobenzyl-conjugated tetrac analogue, restores radiosensitivity in certain radioresistant tumor cells. Due to their molecular, physico-chemical, and biological properties, actions of CMT analogues are believed to be initiated at the thyroid hormone analogue receptor site on plasma membrane integrin αvß3. OBJECTIVE: To explore possible molecular mechanisms of the potentially therapeutically beneficial effect of CMT on cancer cells' sensitivity to radiation, we analyzed actions of CMT analogues on expression of selected sets of genes that have been previously implicated in radioresistance of malignant cells. DISCUSSION AND CONCLUSIONS: In the current study, we report that genome-wide gene expression profiling analysis of human glioblastoma (GBM) and acute myelocytic leukemia (AML) cell lines exposed in vitro to noncytotoxic doses of CMT has identified decreased expression of discrete trios of genes each of which was previously linked to cancer cells' radioresistance. Following the CMT treatment in AML cells, expression of PARP9, PARP15 and STAT3 genes was significantly reduced, while in GBM cells, expression of PRKDC, EGFR and CCNDI was significantly decreased by the drug. Notably, a broader spectrum of genes implicated in cancer cells' radioresistance was observed in primary patient-derived GBM cells after the CMT treatment. Extensive additional experimental and clinical studies are indicated, including analyses of individual patient tumor genomics and of an array of different tumor types to define the sub-sets of tumors manifesting radioresistance in which tetrac-based agents may be expected to enhance therapeutic effects of radiation.


Asunto(s)
Glioblastoma , Integrina alfaVbeta3 , Tolerancia a Radiación , Humanos , Integrina alfaVbeta3/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Glioblastoma/radioterapia , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Línea Celular Tumoral , Tiroxina/farmacología , Tiroxina/análogos & derivados , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo
4.
Cancers (Basel) ; 16(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38792024

RESUMEN

The journal retracts the article, "Anti-Cancer Activities of Thyrointegrin αvß3 Antagonist Mono- and Bis-Triazole Tetraiodothyroacetic Acid Conjugated via Polyethylene Glycols in Glioblastoma" [...].

5.
J Liposome Res ; 34(1): 135-177, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37144339

RESUMEN

Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Liposomas , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Lípidos , Portadores de Fármacos
8.
Clin Transl Sci ; 16(6): 987-1001, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36967488

RESUMEN

The objective of the current study was to identify potential drug-drug interactions (DDIs) with the drug candidate fb-PMT, a novel anticancer thyrointegrin αvß3 antagonist. This was accomplished by using several in vitro assays to study interactions of fb-PMT with both cytochrome P450 (CYP) enzymes and drug transporters, two common mechanisms leading to adverse drug effects. In vitro experiments showed that fb-PMT exhibited weak reversible inhibition of CYP2C19 and CYP3A4. In addition, fb-PMT did not show time-dependent inhibition with any of the seven CYP isoforms tested, including 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4. Human liver microsomal incubations demonstrated that fb-PMT is stable. Potential transporter-mediated DDIs with fb-PMT were assessed with two ATP binding cassette (ABC) family transporters (P-glycoprotein and breast cancer resistance protein) using Caco2 cells and seven solute carrier family (SLC) transporters (organic cation transporter OCT2, organic anion transporters OAT1 and OAT3, organic anion transporter peptides OATP1B1 and OATP1B3, and the multidrug and toxic extrusion proteins MATE1 and MATE2-K using transfected HEK293 cells). Fb-PMT was not a substrate for any of the nine transporters tested in this study, nor did it inhibit the activity of seven of the transporters tested. However, fb-PMT inhibited the uptake of rosuvastatin by both OATP1B1 and OATP1B3 with half-maximal inhibitory concentrations greater than 3 and less than 10 µM. In summary, data suggest that the systemic administration of fb-PMT is unlikely to lead to DDIs through CYP enzymes or ABC and SLC transporters in humans.


Asunto(s)
Transportadores de Anión Orgánico Sodio-Independiente , Transportadores de Anión Orgánico , Humanos , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Células CACO-2 , Células HEK293 , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Interacciones Farmacológicas , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadores de Anión Orgánico/metabolismo
9.
Front Endocrinol (Lausanne) ; 14: 1109528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875482

RESUMEN

The principal hormonal product of the thyroid gland, L-thyroxine (T4), is a prohormone for 3,3',5-triiodo-L-thyronine, T3, the major ligand of nuclear thyroid hormone receptors (TRs). At a cell surface thyroid hormone analogue receptor on cancer cell and endothelial cell plasma membrane integrin αvß3, however, T4 at physiological concentrations is biologically active and is the major ligand. At this site in solid tumor cells, T4 nongenomically initiates cell proliferation, is anti-apoptotic by multiple mechanisms, supports radioresistance and enhances cancer-related angiogenesis. In contrast, hypothyroidism has been reported clinically to slow tumor growth. At physiological levels, T3 is not biologically active at the integrin and maintenance of euthyroidism with T3 in cancer patients may be associated with slowed tumor proliferation. Against this background, we raise the possibility that host serum T4 levels that are spontaneously in the upper tertile or quartile of the normal range in cancer patients may be a factor that contributes to aggressive tumor behavior. Recent observations on tumor metastasis and tumor-associated propensity for thrombosis due to T4 also justify clinical statistical analysis for a relationship to upper tertile hormone levels. That reverse T3 (rT3) may stimulate tumor growth has recently been reported and thus the utility of adding this measurement to thyroid function testing in cancer patients requires assessment. In summary, T4 at physiological concentrations promotes tumor cell division and aggressiveness and euthyroid hypothyroxinemia arrests clinically advanced solid tumors. These findings support the clinical possibility that T4 levels in the upper tertile of the normal range require examination as a tumor supporting factor.


Asunto(s)
Neoplasias Primarias Secundarias , Neoplasias , Humanos , Glándula Tiroides , Ligandos , Tiroxina , Receptores de Hormona Tiroidea
10.
Neurooncol Adv ; 5(1): vdac180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36879662

RESUMEN

Background: Thyrointegrin αvß3 receptors are unique molecular cancer therapeutic targets because of their overexpression on cancer and rapidly dividing blood vessel cells compared and quiescent on normal cells. A macromolecule, TriAzole Tetraiodothyroacetic acid (TAT) conjugated to polyethylene glycol with a lipophilic 4-fluorobenyl group (fb-PMT and NP751), interacts with high affinity (0.21 nM) and specificity with the thyrointegrin αvß3 receptors on the cell surface without nuclear translocation in contrast to the non-polymer conjugated TAT. Methods: The following in vitro assays were carried out to evaluate NP751 including binding affinity to different integrins, transthyretin (TTR)-binding affinity, glioblastoma multiforme (GBM) cell adhesion, proliferation assays, nuclear translocations, chorioallantoic membrane model of angiogenesis, and microarray for molecular mechanisms. Additionally, in vivo studies were carried out to evaluate the anticancer efficacy of NP751, its biodistribution, and brain GBM tumor versus plasma levels kinetics. Results: NP751 demonstrated a broad spectrum of antiangiogenesis and anticancer efficacy in experimental models of angiogenesis and xenografts of human GBM cells. Tumor growth and cancer cells' viability were markedly decreased (by > 90%; P < .001) in fb-PMT-treated U87-luc or 3 different primary human GBM xenograft-bearing mice based on tumor in vivo imaging system (IVIS) imaging and histopathological examination, without relapse upon treatment discontinuation. Additionally, it effectively transports across the blood-brain barrier via its high-affinity binding to plasma TTR with high retention in brain tumors. NP751-induced effects on gene expression support the model of molecular interference at multiple key pathways essential for GBM tumor progression and vascularization. Conclusions: fb-PMT is a potent thyrointegrin αvß3 antagonist with potential impact on GBM tumor progression.

12.
Resuscitation ; 186: 109735, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36806653

RESUMEN

BACKGROUND: Given emerging evidence of rapid non-genomic cytoprotective effects of triiodothyronine (T3), we evaluated the resuscitative efficacy of two nanoparticle formulations of T3 (T3np) designed to prolong cell membrane receptor-mediated signaling. METHODS: Swine (n = 40) were randomized to intravenous vehicle (empty np), EPI (0.015 mg/kg), T3np (0.125 mg/kg), or T3np loaded with phosphocreatine (T3np + PCr; 0.125 mg/kg) during CPR following 7-min cardiac arrest (n = 10/group). Hemodynamics and biomarkers of heart (cardiac troponin I; cTnI) and brain (neuron-specific enolase; NSE) injury were assessed for up to 4-hours post-ROSC, at which time the heart and brain were collected for post-mortem analysis. RESULTS: Compared with vehicle (4/10), the rate of ROSC was higher in swine receiving T3np (10/10; p < 0.01), T3np + PCr (8/10; p = 0.08) or EPI (10/10; p < 0.01) during CPR. Although time to ROSC and survival duration were comparable between groups, EPI was associated with a ∼2-fold higher post-ROSC concentration of cTnI vs T3np and T3np + PCr and the early post-ROSC rise in NSE and neuronal injury were attenuated in T3np-treated vs EPI-treated animals. Analysis of hippocampal ultrastructure revealed deterioration of mitochondrial integrity, reduced active zone length, and increased axonal vacuolization in EPI-treated animals vs controls. However, the frequency of these abnormalities was diminished in animals resuscitated with T3np. CONCLUSIONS: T3np achieved a ROSC rate and post-ROSC survival that was superior to vehicle and comparable to EPI. The attenuation of selected biomarkers of cardiac and neurologic injury at individual early post-ROSC timepoints in T3np-treated vs EPI-treated animals suggests that T3np administration during CPR may lead to more favorable outcomes in cardiac arrest.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Animales , Biomarcadores , Paro Cardíaco/terapia , Porcinos , Tórax , Triyodotironina
13.
Toxicol Appl Pharmacol ; 461: 116405, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716865

RESUMEN

Cancer is one of the leading causes of death worldwide, so pursuing effective and safe therapeutics for cancer is a key research objective nowadays. Doxorubicin (DOX) is one of the commonly prescribed chemotherapeutic agents that has been used to treat cancer with its antimitotic properties via inhibition of topoisomerase II (TOP2) activity. However, many problems hinder the broad use of DOX in clinical practice, including cardiotoxicity and drug resistance. Research in drug discovery has confirmed that natural bioactive compounds (NBACs) display a wide range of biological activities correlating to anticancer outcomes. The combination of NBACs has been seen to be an ideal candidate that might increase the effectiveness of DOX therapy and decreases its unfavorable adverse consequences. The current review discusses the chemo-modulatory mechanism and the protective effects of combined DOX with NBACs with a binding affinity (pKi) toward TOP2A more than pKi of DOX. This review will also discuss and emphasize the molecular mechanisms to provide a pathway for further studies to reveal other signaling pathways. Taken together, understanding the fundamental mechanisms and implications of combined therapy may provide a practical approach to battling cancer diseases.


Asunto(s)
ADN-Topoisomerasas de Tipo II , Doxorrubicina , Humanos , Doxorrubicina/efectos adversos , ADN-Topoisomerasas de Tipo II/metabolismo , Cardiotoxicidad , Apoptosis
15.
Biomed Pharmacother ; 158: 114131, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36538861

RESUMEN

Although the currently available pharmacological assays can cure most pathological disorders, they have limited therapeutic value in relieving certain disorders like myocardial infarct, peripheral vascular disease, amputated limbs, or organ failure (e.g. renal failure). Pilot studies to overcome such problems using regenerative medicine (RM) delivered promising data. Comprehensive investigations of RM in zebrafish or reptilians are necessary for better understanding. However, the precise mechanisms remain poorly understood despite the tremendous amount of data obtained using the zebrafish model investigating the exact mechanisms behind their regenerative capability. Indeed, understanding such mechanisms and their application to humans can save millions of lives from dying due to potentially life-threatening events. Recent studies have launched a revolution in replacing damaged human organs via different approaches in the last few decades. The newly established branch of medicine (known as Regenerative Medicine aims to enhance natural repair mechanisms. This can be done through the application of several advanced broad-spectrum technologies such as organ transplantation, tissue engineering, and application of Scaffolds technology (support vascularization using an extracellular matrix), stem cell therapy, miRNA treatment, development of 3D mini-organs (organoids), and the construction of artificial tissues using nanomedicine and 3D bio-printers. Moreover, in the next few decades, revolutionary approaches in regenerative medicine will be applied based on artificial intelligence and wireless data exchange, soft intelligence biomaterials, nanorobotics, and even living robotics capable of self-repair. The present work presents a comprehensive overview that summarizes the new and future advances in the field of RM.


Asunto(s)
Medicina Regenerativa , Pez Cebra , Animales , Humanos , Inteligencia Artificial , Ingeniería de Tejidos , Materiales Biocompatibles
16.
Vascul Pharmacol ; 148: 107127, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36375733

RESUMEN

Complications with atherosclerosis can often lead to fatal clot formation and blood vessel occlusion - also known as atherothrombosis. A key component to the development of atherosclerosis and atherothrombosis is the endothelium and its ability to regulate the balance between prothrombotic and antithrombotic activities. Endothelial surface glycocalyx has a critical role in maintenance of vascular integrity. The endothelial glycocalyx, nitric oxide, prostacyclins, heparan sulfate, thrombomodulin, and tissue factor pathway inhibitor all prevent thrombosis, while P-selectin, among many other factors, favors thrombosis. However, endothelial dysfunction gives rise to the acceleration of thrombotic development and eventually the requirement of antithrombotic therapy. Most FDA-approved anticoagulant and antiplatelet therapies today carry a side effect profile of major bleed. Within the past five years, several preclinical studies using different endothelial targets and nanotechnology as a drug delivery method have emerged to target the endothelium and to enhance current antithrombosis without increasing bleed risk. While clinical studies are required, this review illustrates the proof-of-concept of nanotechnology in promoting a greater safety and efficacy profile through multiple in vitro and in vivo studies.


Asunto(s)
Aterosclerosis , Trombosis , Humanos , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Endotelio/metabolismo , Anticoagulantes , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Nanotecnología , Endotelio Vascular/metabolismo
18.
Front Pharmacol ; 13: 902141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518666

RESUMEN

We have recently reported on the development of fb-PMT (NP751), a conjugate of the thyroid hormone metabolite tetraiodothyroacetic acid (tetrac) and monodisperse polyethylene glycol 36. It exhibited high affinity for thyrointegrin αvß3 receptor and potent anti-angiogenic and anticancer activity in vivo. The objective of the current study is to determine the pharmacokinetics (PK) of fb-PMT in experimental animals, such as mice, rats, and monkeys. NP751 was quantified using a propylene diamine-modified tetraiodothyroacetic acid (DAT) as an internal standard. The limit of quantification (LOQ) for fb-PMT was 1.5 ng/µL and the recovery efficiency was 93.9% with the developed method. The peak plasma concentration (Cmax) and the area under the curve (AUC) results at different doses in mice, rats and monkeys suggest that pharmacokinetics of NP751 is dose-dependent within the dose ranges administered. Results indicate that NP751 has comparable PK parameters that provides enough exposure as a molecularly tumor targeted molecule in multiple species and is a promising anticancer therapeutic.

20.
Nanomedicine (Lond) ; 17(15): 1039-1053, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36102916

RESUMEN

Aim: Epigallocatechin gallate (EGCG) derived from green tea has poor stability; therefore, to enhance its bioavailability and anticancer efficiency, we synthesized three different nanoformulations. We hypothesized that these three nanoformulations of EGCG (nano-EGCG) would enhance EGCG's stability and improve its anticancer and antiangiogenic activity against melanoma compared with free EGCG. Methods: We prepared nano-EGCG using a copolymerization method with the UV blocker ZnO and the antioxidants lycopene and olive oil. Results: The different nano-EGCG formulation exhibited improved EGCG stability and greater suppression of melanoma growth than free EGCG. Nanoformulation preparation methods efficiently prevented the loss of EGCG activity and are a favorable approach for the treatment of melanoma. Conclusion: Nano-EGCG formulations had enhanced stability and produced greater suppression of melanoma tumor growth and angiogenesis compared with free EGCG.


Asunto(s)
Catequina , Melanoma , Óxido de Zinc , Humanos , Antioxidantes/farmacología , Licopeno , Aceite de Oliva , Catequina/farmacología , Catequina/uso terapéutico , , Melanoma/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...