Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999341

RESUMEN

Growth differentiation factor 9 (GDF-9) contributes to early ovarian development and oocyte survival. Higher concentrations of GDF-9 in follicular fluid (FF) are associated with oocyte nuclear maturation and optimal embryo development. In in vitro fertilization (IVF), GDF-9 affects the ability of the oocyte to fertilize and subsequent embryonic development. Bone morphogenetic protein 15 (BMP-15) is involved in the regulation of ovarian function and affects oocyte development. During IVF, BMP-15 contributes to the formation of competent blastocysts. BMP-15 may play a role in embryo implantation by affecting endometrial receptivity. Bone morphogenetic protein 4 (BMP-4) is involved in the regulation of follicle growth and development and affects granulosa cell (GC) differentiation. In relation to IVF, BMP-4 is important for embryonic development, influences cell fate and differentiation, and plays a role in facilitating embryo-endometrial interactions during the implantation process. Extracellular matrix metalloproteinase inducer (EMMPRIN) is associated with ovulation and follicle rupture, promotes the release of mature eggs, and affects the modification of the extracellular matrix of the follicular environment. In IVF, EMMPRIN is involved in embryo implantation by modulating the adhesive properties of endometrial cells and promotes trophoblastic invasion, which is essential for pregnancy to occur. The purpose of the current article is to review the studies and recent findings of GDF-9, BMP-15, BMP-4 and EMMPRIN as fundamental factors in normal follicular development and in vitro fertilization.

2.
J Clin Med ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38929888

RESUMEN

Background: Recurrent pregnancy loss refers to the spontaneous demise of two or more pregnancies before the 24 weeks of gestation. In almost half of the cases of recurrent miscarriages, the causes remain unknown since there is no reliable way of prognosis, early diagnosis, or treatment. Recent research has detected differential expression of certain miRNAs in reproductive system pathologies. Methods: The aim of the present review is to focus on microRNAs and their relationship with idiopathic recurrent miscarriages and to correlate miRNA expression with recurrent miscarriage and examine their potential role as biomarkers. Pubmed/Medline and Scopus databases were searched up to 31st January 2024 with terms related to recurrent pregnancy loss and miRNAs. Results: In total, 21 studies were selected for the review. A total of 75 different miRNAs were identified, showing a statistically significant differential expression. Around 40 miRNAs had increased expression, such as miR-520, miR-184 and miR-100-5p, 21 decreased, such as let-7c, and 14 had either increased or decreased expression depending on the study, such as miR-21. Conclusions: The dysregulation of miRNA expression is strongly associated with recurrent miscarriages. The circulating in the peripheral blood miRNAs, miR-100-5p and let-7c, might be utilized as biomarkers and establish a valuable non-invasive prognostic and diagnostic tool in the future.

3.
J Clin Med ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892858

RESUMEN

Infertility represents a significant global health challenge impacting millions of couples worldwide. Approximately half of all infertile couples exhibit compromised semen quality, indicative of diminished male fertility. While the diagnosis of male infertility traditionally relies on semen analysis, its limitations in providing a comprehensive assessment of male reproductive health have spurred efforts to identify novel biomarkers. Seminal plasma, a complex fluid containing proteins, lipids, and metabolites, has emerged as a rich source of such indicators. Reproduction depends heavily on seminal plasma, the primary transporter of chemicals from male reproductive glands. It provides a non-invasive sample for urogenital diagnostics and has demonstrated potential in the identification of biomarkers linked to illnesses of the male reproductive system. The abundance of seminal proteins has enabled a deeper understanding of their biological functions, origins, and differential expression in various conditions associated with male infertility, including azoospermia, asthenozoospermia, oligozoospermia, teratozoospermia, among others. The true prevalence of male infertility is understated due to the limitations of the current diagnostic techniques. This review critically evaluates the current landscape of seminal plasma biomarkers and their utility in assessing male infertility. Βy bridging the gap between research and clinical practice, the integrative assessment of seminal plasma biomarkers offers a multimodal approach to comprehensively evaluate male infertility.

4.
J Clin Med ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673433

RESUMEN

Preimplantation genetic testing (PGT) has become a common supplementary diagnοstic/testing tοol for in vitro fertilization (ΙVF) cycles due to a significant increase in cases of PGT fοr mοnogenic cοnditions (ΡGT-M) and de novο aneuplοidies (ΡGT-A) over the last ten years. This tendency is mostly attributable to the advancement and application of novel cytogenetic and molecular techniques in clinical practice that are capable of providing an efficient evaluation of the embryonic chromosomal complement and leading to better IVF/ICSI results. Although PGT is widely used, it requires invasive biopsy of the blastocyst, which may harm the embryo. Non-invasive approaches, like cell-free DNA (cfDNA) testing, have lower risks but have drawbacks in consistency and sensitivity. This review discusses new developments and opportunities in the field of preimplantation genetic testing, enhancing the overall effectiveness and accessibility of preimplantation testing in the framework of developments in genomic sequencing, bioinformatics, and the integration of artificial intelligence in the interpretation of genetic data.

5.
J Clin Med ; 13(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38610915

RESUMEN

Background: Telomere attrition and mitochondrial dysfunction are two fundamental aspects of aging. Calorie restriction (CR) is the best strategy to postpone aging since it can enhance telomere attrition, boost antioxidant capacity, and lower the generation of reactive oxygen species (ROS). Since ROS is produced by mitochondria and can readily travel to cell nuclei, it is thought to be a crucial molecule for information transfer between mitochondria and cell nuclei. Important variables that affect the quality and functionality of sperm and may affect male reproductive health and fertility include telomere length, mitochondrial content, and the ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA). Telomere damage results from mitochondrial failure, whereas nuclear DNA remains unaffected. This research aims to investigate potential associations between these three variables and how they might relate to body mass index. Methods: Data were collected from 82 men who underwent IVF/ICSI at the University Hospital of Ioannina's IVF Unit in the Obstetrics and Gynecology Department. Evaluations included sperm morphology, sperm count, sperm motility, and participant history. To address this, male participants who were categorized into three body mass index (ΒΜΙ) groups-normal, overweight, and obese-had their sperm samples tested. Results: For both the normal and overweight groups, our results show a negative connection between relative telomere length and ΒΜI. As an illustration of a potential connection between mitochondrial health and telomere maintenance, a positive correlation was found for the obese group. Only the obese group's results were statistically significant (p < 0.05). More evidence that longer telomeres are associated with lower mitochondrial content can be found in the negative connection between telomere length and mitochondrial content in both the normal and overweight groups. However, the obese group showed a positive association. The data did not reach statistical significance for any of the three groups. These associations may affect sperm quality since telomere length and mitochondrial concentration are indicators of cellular integrity and health. Moreover, the ratio of mtDNA to nDNA was positively correlated with the relative telomere lengths of the obese group, but negatively correlated with the normal and overweight groups. In every group that was studied, the results were not statistically significant. According to this, male fertility may be negatively impacted by an imbalance in the copy number of the mitochondrial genome compared to the nuclear DNA in sperm. Conclusions: Essentially, the goal of our work is to determine whether mitochondria and telomere length in human sperm interact. Understanding these connections may aid in the explanation of some male infertility causes and possibly contribute to the creation of new treatment modalities for problems pertaining to reproductive health. The functional implications of these connections and their applications in therapeutic settings require further investigation.

6.
Medicina (Kaunas) ; 59(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38138197

RESUMEN

Transgender individuals often face elevated mental health challenges due to gender dysphoria, but gender-affirming treatments such as surgery and hormone therapy have been linked to significant improvements in mental well-being. The potential influence of time and circadian rhythms on these treatments is prevalent. The intricate interplay between hormones, clock genes, and fertility is profound, acknowledging the complexity of reproductive health in transgender individuals. Furthermore, risks associated with gender-affirming hormonal therapy and potential complications of puberty suppression emphasize the importance of ongoing surveillance for these patients and the need of fertility preservation and family-building options for transgender individuals. This narrative review delves into the intricate landscape of hormone therapy for transgender individuals, shedding light on its impact on bone, cardiovascular, and overall health. It explores how hormone therapy affects bone maintenance and cardiovascular risk factors, outlining the complex interplay of testosterone and estrogen. It also underscores the necessity for further research, especially regarding the long-term effects of transgender hormones. This project emphasizes the critical role of healthcare providers, particularly obstetricians and gynecologists, in providing affirming care, calling for comprehensive understanding and integration of transgender treatments. This review will contribute to a better understanding of the impact of hormone therapy on reproductive health and overall well-being in transgender individuals. It will provide valuable insights for healthcare providers, policymakers, and transgender individuals themselves, informing decision-making regarding hormone therapy and fertility preservation options. Additionally, by identifying research gaps, this review will guide future studies to address the evolving healthcare needs of transgender individuals. This project represents a critical step toward addressing the complex healthcare needs of this population. By synthesizing existing knowledge and highlighting areas for further investigation, this review aims to improve the quality of care and support provided to transgender individuals, ultimately enhancing their reproductive health and overall well-being.


Asunto(s)
Preservación de la Fertilidad , Personas Transgénero , Humanos , Personas Transgénero/psicología , Reproducción , Fertilidad , Testosterona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...