Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 23922, 2024 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-39397051

RESUMEN

The fluctuation of solar radiation throughout the day presents a significant obstacle to the widespread adoption of solar dryers for the dehydration of agricultural products, particularly those that are sensitive to high temperatures, such as basil leaf drying during the winter season. Consequently, this recent study sought to address the limitations of solar-powered dryers by implementing a hybrid drying system that harnesses both solar energy and liquid petroleum gas (LPG). Furthermore, an innovative automatic electronic unit was integrated to facilitate the circulation of air between the drying chamber and the ambient environment. Considering the solar radiation status in Egypt, an LPG hybrid solar dryer has been developed to be suitable for both sunny and cloudy weather conditions. This hybrid solar dryer (HSD) uses indirect forced convection and a controlled auxiliary heating system (LPG) to regulate both temperature and relative humidity, resulting in increased drying rates, reduced energy consumption, and the production of high-quality dried products. The HSD was tested and evaluated for drying basil leaves at three different temperatures of50, 55, and 60 °C and three air changing rates of 70, 80, and 90%, during both summer and winter sessions. The obtained results showed that drying basil at a temperature of 60 °C and an air changing rate of 90% led to a decrease in the drying time by about 35.71% and 35.56% in summer and winter, respectively, where summer drying took 135-210 min and winter drying took 145-225 min to reach equilibrium moisture content (MC). Additionally, the effective moisture diffusivity ranged from 5.25 to 9.06 × 10- 9 m2/s, where higher values of effective moisture diffusivity (EMD) were increased with increasing both drying temperatures and air change rates. Furthermore, the activation energy decreased from 16.557 to 25.182 kJ/mol to 1.945-15.366 kJ/mol for the winter and summer sessions, respectively. On the other hand, the analysis of thin-layer kinetic showed that the Modified Midilli II model has a higher coefficient of determination R2, the lowest χ2, and the lowest root mean square error (RMSE) compared to the other models of both winter and summer sessions. Finally, the LPG hybrid solar dryer can be used for drying a wide range of agricultural products, and it is more efficient for drying medicinal plants. This innovative dryer utilizes a combination of LPG and solar energy, making it efficient and environmentally friendly.


Asunto(s)
Desecación , Ocimum basilicum , Hojas de la Planta , Energía Solar , Ocimum basilicum/química , Hojas de la Planta/química , Desecación/métodos , Temperatura , Luz Solar , Humedad
2.
PeerJ ; 12: e17286, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708356

RESUMEN

Drought and salinity are the major abiotic stress factors negatively affecting the morphophysiological, biochemical, and anatomical characteristics of numerous plant species worldwide. The detrimental effects of these environmental factors can be seen in leaf and stem anatomical structures including the decrease in thickness of cell walls, palisade and spongy tissue, phloem and xylem tissue. Also, the disintegration of grana staking, and an increase in the size of mitochondria were observed under salinity and drought conditions. Drought and salt stresses can significantly decrease plant height, number of leaves and branches, leaf area, fresh and dry weight, or plant relative water content (RWC%) and concentration of photosynthetic pigments. On the other hand, stress-induced lipid peroxidation and malondialdehyde (MDA) production, electrolyte leakage (EL%), and production of reactive oxygen species (ROS) can increase under salinity and drought conditions. Antioxidant defense systems such as catalase, peroxidase, glutathione reductase, ascorbic acid, and gamma-aminobutyric acid are essential components under drought and salt stresses to protect the plant organelles from oxidative damage caused by ROS. The application of safe and eco-friendly treatments is a very important strategy to overcome the adverse effects of drought and salinity on the growth characteristics and yield of plants. It is shown that treatments with plant growth-promoting bacteria (PGPB) can improve morphoanatomical characteristics under salinity and drought stress. It is also shown that yeast extract, mannitol, proline, melatonin, silicon, chitosan, α-Tocopherols (vitamin E), and biochar alleviate the negative effects of drought and salinity stresses through the ROS scavenging resulting in the improvement of plant attributes and yield of the stressed plants. This review discusses the role of safety and eco-friendly treatments in alleviating the harmful effects of salinity and drought associated with the improvement of the anatomical, morphophysiological, and biochemical features in plants.


Asunto(s)
Estrés Fisiológico , Estrés Fisiológico/efectos de los fármacos , Sequías , Desarrollo de la Planta/efectos de los fármacos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Salinidad , Plantas/metabolismo , Plantas/efectos de los fármacos
3.
BMC Chem ; 13(1): 118, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31583391

RESUMEN

In the present study two different RSLC columns, Acclaim RSLC 120 C18, 5.0 µm, 4.6 × 150 mm (column A) and Acclaim RSLC 120 C18, 2.2 µm, 2.1 × 100 mm (Column B) were utilized for the analysis of velpatasvir (VPS) in presence of sofosbuvir (SFV), where due to the encountered fluorescent properties of VPS fluorescent detection at 405 nm after excitation at 340 nm (Method 1) was used for its detection where the non-fluorescent SFV did not interfere. The same columns were further utilized for the simultaneous determination of SFV and VPS either in bulk form or in their combined tablet, where UV- spectrophotometric detection at 260 nm was selected for the simultaneous analysis of both drugs (Method 2). A mobile phase consisting of NaH2PO4, pH 2.5 (with phosphoric acid) and acetonitrile in a ratio of 60:40 v/v was used for both methods. The mobile phase was pumped at a flow rate of 1.0 mL/min when using column, A and 0.5 mL/min when using column B. The methods showed good linearity over the concentration ranges of 1.0-5.0 and 2.5-10.0 ng/mL for VPS when utilizing Method 1 A and B respectively. Where the linearity concentration range was from 30.0-150.0 to 120-600.0 ng/mL for VPS and SFV respectively when applying Method 2. Both methods 1 and 2 were performed by utilizing the two analytical columns. The different chromatographic parameters as retention time, resolution, number of theoretical plates (N), capacity factor, tailing factor and selectivity were carefully optimized. The results show that comparing the performance of the two utilized columns revealed that shorter column (2.1 mm × 100 mm) with small particle packing was superior to the longer column (4.6 × 150 mm) for the analysis of the studied drugs allowing a reduction of the analysis time by 70% without any detrimental effect on performance. This prompts the decrease of the investigation costs by saving money on organic solvents and expanding the overall number of analyses per day.

4.
Molecules ; 24(5)2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857263

RESUMEN

ß-glucuronidase is a lysosomal glycosidase enzyme which catalyzes the extracellular matrix of cancer and normal cells and the glycosaminoglycans of the cell membrane, which is important for cancer cell proliferation, invasion, and metastasis. Liver cancer, colon carcinoma, and neoplasm bladder are triggered by the increase of the level of ß-glucuronidase activity. The most valuable structures are indole and oxadiazole which has gain immense attention because of its pharmacological behavior and display many biological properties. Twenty-two (1⁻22) analogs of indole based oxadiazole were synthesized and screened for their inhibitory potential against ß-glucuronidase. Majority of the compounds showed potent inhibitory potential with IC50 values ranging between 0.9 ± 0.01 to 46.4 ± 0.9 µM, under positive control of standard drug d-saccharic acid 1,4 lactone (IC50 = 48.1 ± 1.2 µM). Structural activity relationship (SAR) has been established for all synthesized compounds. To shed light on molecular interactions between the synthesized compounds and ß-glucuronidase, 1, 4, and 6 compounds were docked into the active binding site of ß-glucuronidase. The obtained results showed that this binding is thermodynamically favorable and ß-glucuronidase inhibition of the selected compounds increases with the number of hydrogen bonding established in selected compound-ß-glucuronidase complexes.


Asunto(s)
Glucuronidasa/metabolismo , Indoles/química , Indoles/farmacología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Oxadiazoles/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...