Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(7): 906-915, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831036

RESUMEN

Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.


Asunto(s)
Clorofila , Clorofila/química , Clorofila/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Fotosíntesis , Transferencia de Energía , Microscopía por Crioelectrón , Conformación Proteica , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo
2.
Science ; 384(6694): 420-428, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662830

RESUMEN

Small macrocycles with four or fewer amino acids are among the most potent natural products known, but there is currently no way to systematically generate such compounds. We describe a computational method for identifying ordered macrocycles composed of alpha, beta, gamma, and 17 other amino acid backbone chemistries, which we used to predict 14.9 million closed cycles composed of >42,000 monomer combinations. We chemically synthesized 18 macrocycles predicted to adopt single low-energy states and determined their x-ray or nuclear magnetic resonance structures; 15 of these were very close to the design models. We illustrate the therapeutic potential of these macrocycle designs by developing selective inhibitors of three protein targets of current interest. By opening up a vast space of readily synthesizable drug-like macrocycles, our results should considerably enhance structure-based drug design.


Asunto(s)
Amidas , Aminoácidos , Productos Biológicos , Diseño de Fármacos , Péptidos Cíclicos , Amidas/química , Aminoácidos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Productos Biológicos/farmacología , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología
3.
Nat Commun ; 12(1): 3384, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099674

RESUMEN

Despite recent success in computational design of structured cyclic peptides, de novo design of cyclic peptides that bind to any protein functional site remains difficult. To address this challenge, we develop a computational "anchor extension" methodology for targeting protein interfaces by extending a peptide chain around a non-canonical amino acid residue anchor. To test our approach using a well characterized model system, we design cyclic peptides that inhibit histone deacetylases 2 and 6 (HDAC2 and HDAC6) with enhanced potency compared to the original anchor (IC50 values of 9.1 and 4.4 nM for the best binders compared to 5.4 and 0.6 µM for the anchor, respectively). The HDAC6 inhibitor is among the most potent reported so far. These results highlight the potential for de novo design of high-affinity protein-peptide interfaces, as well as the challenges that remain.


Asunto(s)
Diseño de Fármacos , Inhibidores de Histona Desacetilasas/farmacología , Péptidos Cíclicos/farmacología , Relación Estructura-Actividad , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Pruebas de Enzimas , Histona Desacetilasa 2/antagonistas & inhibidores , Histona Desacetilasa 2/aislamiento & purificación , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/ultraestructura , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/aislamiento & purificación , Histona Desacetilasa 6/ultraestructura , Inhibidores de Histona Desacetilasas/química , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Biblioteca de Péptidos , Péptidos Cíclicos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...