Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 95(15): 6383-6390, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37023260

RESUMEN

In the field of nanotoxicology, the detection and size characterization of nanoparticles (NPs) in biological tissues become increasingly important. To gain information on both particle size and particle distribution in histological sections, laser ablation and single particle inductively coupled plasma-mass spectrometry (LA-spICP-MS) was used in combination with a liquid calibration of dissolved metal standards via a pneumatic nebulizer. In the first step, the particle size distribution of Ag NPs embedded in matrix-matched gelatine standards introduced via LA was compared with that of Ag NPs in a suspension and nebulizer-based ICP-MS. The data show that the particles remained intact by the ablation process as confirmed by transmission electron microscopy. Moreover, the optimized method was applied to CeO2 NPs that are highly relevant for (eco-)toxicological research but, unlike Ag NPs, are multi-shaped and have a broad particle size distribution. Upon analyzing the particle size distribution of CeO2 NPs in cryosections of rat spleen, CeO2 NPs were found to remain unchanged in size over 3 h, 3 d, and 3 weeks post-intratracheal instillation, with the fraction of smaller particles reaching the spleen first. Overall, LA-spICP-MS combined with a calibration based on dissolved metal standards is a powerful tool to simultaneously localize and size NPs in histological sections in the absence of particle standards.


Asunto(s)
Terapia por Láser , Nanopartículas del Metal , Nanopartículas , Ratas , Animales , Espectrometría de Masas/métodos , Calibración , Análisis Espectral , Nanopartículas/química , Tamaño de la Partícula , Nanopartículas del Metal/química
2.
Methods Mol Biol ; 2531: 243-257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35941490

RESUMEN

Capillary electrophoresis (CE) can be used for the separation of nanoparticles (NPs). Coupling of CE to inductively coupled plasma mass spectrometry (ICP-MS) or single particle (sp)-ICP-MS enhances the analytical performance and capabilities of the method compared to CE with a standard detector (ultraviolet visible spectroscopy), in particular for trace analysis of metals or metal-containing compounds. spICP-MS is a method for NP analysis, where a standard ICP-MS setup is used with fast time-resolved detection in order to obtain information on individual NPs. Here we describe a method for the separation and detection of silver and gold NPs using CE-ICP-MS and CE-spICP-MS with reversed electrode polarity stacking mode (REPSM) for online preconcentration. CE-spICP-MS allows obtaining the average size, size distribution, elemental composition, and particle number concentration (PNC) of NPs in addition to a CE separation profile in a single run. Moreover, CE-spICP-MS can be used in some cases to separate NPs with different coatings.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Electroforesis Capilar , Oro/química , Espectrometría de Masas/métodos , Nanopartículas del Metal/química , Nanopartículas/química , Tamaño de la Partícula
3.
J Toxicol Environ Health A ; 85(4): 143-162, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34719351

RESUMEN

Toxicological studies were performed to examine silver nanoparticle (AgNP, size: 14.4 ± 2.5 nm) transformation within three different test media and consequent effects on embryos of whitefish (Coregonus lavaretus) and roach (Rutilus rutilus). The test media, namely ASTM very hard water, ISO standard dilution medium, and natural lake water differed predominantly in ionic strength. Total silver was determined using inductively coupled plasma mass spectrometry (ICP-MS), while AgNPs were characterized by transmission electron microscopy and single particle ICP-MS. Silver species distributions were estimated via thermodynamic speciation calculations. Data demonstrated that increased AgNP dissolution accompanied by decreasing ionic strength of the test medium did not occur as noted in other studies. Further, other physicochemical parameters including AgNP size and metallic species distribution did not markedly affect AgNP-induced toxicity. Irrespective of the test medium, C. lavaretus were more sensitive to AgNP exposure (median lethal concentration after 8 weeks: 0.51-0.73 mg/L) compared to R. rutilus, where adverse effects were only observed at 5 mg/L in natural lake water. In addition, AgNP-induced toxicity was lower in the two standard test media compared to natural lake water. Currently, there are no apparent studies assessing simultaneously the sensitivity of C. lavaretus and R. rutilus to AgNP exposure. Therefore, the aim of this study was to (1) investigate AgNP-induced toxicity in C. lavaretus and R. rutilus cohabiting in the same aquatic environment and (2) the role played by test media in the observed effects of AgNPs on these aquatic species.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Animales , Cyprinidae/embriología , Agua Dulce/química , Nanopartículas del Metal/química , Tamaño de la Partícula , Salmonidae/embriología , Contaminantes del Agua/toxicidad
4.
Environ Sci Technol ; 54(14): 8681-8689, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32539366

RESUMEN

The increasing use of manufactured nanomaterials (MNMs) and their inevitable release into the environment, especially via wastewater treatment plants (WWTPs), poses a potential threat for aquatic organisms. The characterization of MNMs with analytical tools to comprehend their fate and effect on the ecosystem is hence of great importance for environmental risk assessment. We herein report, for the first time, the investigation of physicochemical transformation processes during artificial wastewater treatment of silver (Ag-NPs) and titanium dioxide nanoparticles (TiO2-NPs) via selected area electron diffraction (SAED). TiO2-NPs with an anatase/rutile ratio of ∼80/20 were found to not undergo any physicochemical transformation, as shown via previous energy-dispersive X-ray analysis (EDX) elemental mapping and crystal structure analysis via SAED. In contrast, Ag-NPs were colocalized with substantial amounts of sulfur (Ag/S ratio of 1.9), indicating the formation of Ag2S. SAED ultimately proved the complete transformation of face-centered cubic (fcc) Ag-NPs into monoclinic Ag2S-NPs. The size distribution of both nanomaterials remained virtually unchanged. Our investigations show that cloud point extraction of NPs and their subsequent crystal structure analysis via SAED is another valuable approach toward the comprehensive investigation of wastewater-borne MNMs. However, the extraction procedure needs optimization for environmentally low NP concentrations.


Asunto(s)
Nanopartículas del Metal , Plata , Ecosistema , Electrones , Titanio , Aguas Residuales
5.
Sci Rep ; 10(1): 8021, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415127

RESUMEN

One major environmental problem of our time are emerging contaminants in the aquatic environment. While nanoparticles exhibit attractive features such as antimicrobial properties in the case of silver nanoparticles (AgNPs), earlier studies suggest that NPs are not completely filtered out at wastewater treatment plants and may therefore be continuously introduced into the aquatic environment. Although adverse effects of AgNPs on aquatic organisms have been extensively studied, there is still a lack of knowledge on how this chemical stressor interacts with natural cues on the maternal and subsequent generation of aquatic organisms. We tested whether AgNPs (NM-300K, 14.9 ± 2.4 nm, concentration range: 2.5 µg/L - 20 µg/L) affect the kairomone-induced adaptive anti-predator defence mechanism in maternal Daphnia and their offspring. While maternal Daphnia developed typical anti-predator defence mechanisms when exposed to kairomones and AgNPs, their offspring could not develop such adaptive defensive traits. The lack of this defence mechanism in offspring could have dramatic negative consequences (e.g. reduced Daphnia population) for the entire complex food web in the aquatic ecosystem. For a realistic risk assessment, it is extremely important to test combinations of chemical stressors because aquatic organisms are exposed to several natural and artificial chemical stressors at the same time.


Asunto(s)
Daphnia/efectos de los fármacos , Daphnia/fisiología , Nanopartículas del Metal/efectos adversos , Conducta Predatoria , Plata , Animales , Exposición a Riesgos Ambientales/efectos adversos , Nanopartículas del Metal/química , Feromonas , Plata/efectos adversos , Plata/química
6.
Aquat Toxicol ; 220: 105404, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31954982

RESUMEN

Due to their widespread use, silver (Ag) and titanium dioxide (TiO2) nanoparticles (NPs) are commonly discharged into aquatic environments via wastewater treatment plants. The study was aimed to assess the effects of wastewater-borne AgNPs (NM-300 K; 15.5 ±â€¯2.4 nm; 25-125 µg L-1) and TiO2NPs (NM-105; 23.1 ±â€¯6.2 nm; 12.5-100 µg L-1), from a laboratory-scale wastewater treatment plant, on Daphnia magna, at individual and subcellular level. For effect comparison, animals were also exposed to ASTM-dispersed NPs at the same nominal concentrations. The behaviour of D. magna was evaluated through monitoring of swimming height and allocation time for preferred zones after 0 h and 96 h of exposure. Biochemical markers of neurotransmission, anaerobic metabolism, biotransformation, and oxidative stress were subsequently determined. No 96-h EC50 (immobilization ≤ 4 %) could be obtained with wastewater-borne NPs and ASTM-dispersed TiO2NPs, whereas the ASTM-dispersed AgNPs resulted in an immobilization 96-h EC50 of 113.8 µg L-1. However, both wastewater-borne and ASTM-dispersed TiO2NPs, at 12.5 µg L-1, caused immediate (0 h) alterations on the swimming height. Allocation time analyses showed that animals exposed to ASTM-dispersed AgNPs spent more time on the surface and bottom at 0 h, and in the middle and bottom at 96 h. This pattern was not observed with ASTM-dispersed TiO2NPs nor with wastewater-borne AgNPs and wastewater-borne TiO2NPs. At the biochemical level, the more pronounced effects were observed with wastewater-borne AgNPs (e.g. induction of lactate dehydrogenase and glutathione S-transferase activities, and inhibition of catalase activity). This integrative approach showed that: (i) the behavioural and biochemical response-patterns were distinct in D. magna exposed to environmentally relevant concentrations of wastewater-borne and ASTM-dispersed NPs; (ii) the most pronounced effects on allocation time were induced by ASTM-dispersed AgNPs; and (iii) at the subcellular level, wastewater-borne AgNPs were more toxic than wastewater-borne TiO2NPs. This study highlights the need for the assessment of the effects of wastewater-borne NPs under realistic exposure scenarios, since processes in wastewater treatment plants may influence their toxicity.


Asunto(s)
Daphnia/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Titanio/toxicidad , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Daphnia/metabolismo , Estrés Oxidativo/efectos de los fármacos , Natación
7.
Anal Chem ; 89(18): 9767-9774, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28838231

RESUMEN

The possibility of separating mixtures of Ag nanoparticles (NPs) with similar sizes but different surface coatings using capillary electrophoresis coupled to single particle inductively coupled mass-spectrometry (CE-SP-ICP-MS) was investigated. In two-component mixtures, it was possible to separate 40 nm sized polyvinylpirrolidone (PVP)- and citrate-coated NPs, 40 nm sized polyethylene glycol (PEG)- and citrate-coated NPs, and 60 nm sized PVP- and citrate-coated NPs. The separation of a more complex mixture containing NPs with the different coatings and sizes was successful, and each component, namely, 20, 40, and 60 nm sized citrate-coated and 40 and 60 nm sized PVP-coated NPs, could be distinguished. The theoretically expected migration order was confirmed by experimental results with selected Ag NPs. On the basis of the experimental observations, a separation mechanism that considers the effect of stable vs displaceable coatings during NP migration in CE is suggested. The ICP-MS was equipped with a prototype data acquisition system (µsDAQ) that provided 5 µs time resolution.

8.
Anal Chem ; 89(13): 7152-7159, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28602085

RESUMEN

Capillary electrophoresis (CE) coupled to single particle inductively coupled plasma mass-spectrometry (SP-ICP-MS) was used for the first time with a prototype data acquisition (µsDAQ) system that features 5 µs time resolution (100% duty cycle) to separate and quantify mixtures of silver nanoparticles (Ag NPs). Additionally, an online preconcentration technique, reversed electrode polarity stacking mode (REPSM), was applied for Ag NPs analysis with CE-SP-ICP-MS for the first time. After optimization, best results were achieved using a injection time of 110 s and a constant pressure of 50 mbar in hydrodynamic injection mode. It was possible to detect 14.3 ± 1.5× more 20 nm sized, 21.0 ± 4.2× more 40 nm sized, and 27.7 ± 4.9× more 60 nm sized Ag NPs compared to the standard injection time of only 3 s. The effect of applied voltage on the NPs separation was studied, and a CE separation at 20 kV was found to be optimal for the present setup. The capability of CE-SP-ICP-MS for quantification of particle number concentration was investigated, and detection limits in the submicrogram-per-liter range were achieved. The possibility to separate 20, 40, and 60 nm sized Ag NPs simultaneously present in a mixture was demonstrated over a broad concentration range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...