Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982932

RESUMEN

The role of ion channels is extensively described in the context of the electrical activity of excitable cells and in excitation-contraction coupling. They are, through this phenomenon, a key element for cardiac activity and its dysfunction. They also participate in cardiac morphological remodeling, in particular in situations of hypertrophy. Alongside this, a new field of exploration concerns the role of ion channels in valve development and remodeling. Cardiac valves are important components in the coordinated functioning of the heart by ensuring unidirectional circulation essential to the good efficiency of the cardiac pump. In this review, we will focus on the ion channels involved in both the development and/or the pathological remodeling of the aortic valve. Regarding valve development, mutations in genes encoding for several ion channels have been observed in patients suffering from malformation, including the bicuspid aortic valve. Ion channels were also reported to be involved in the morphological remodeling of the valve, characterized by the development of fibrosis and calcification of the leaflets leading to aortic stenosis. The final stage of aortic stenosis requires, until now, the replacement of the valve. Thus, understanding the role of ion channels in the progression of aortic stenosis is an essential step in designing new therapeutic approaches in order to avoid valve replacement.


Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Humanos , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/patología , Fibrosis
2.
Cancers (Basel) ; 14(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36139640

RESUMEN

Thoracic radiotherapy can lead to cardiac remodeling including valvular stenosis due to fibrosis and calcification. The monovalent non-selective cation channel TRPM4 is known to be involved in calcium handling and to participate in fibroblast transition to myofibroblasts, a phenomenon observed during aortic valve stenosis. The goal of this study was to evaluate if TRPM4 is involved in irradiation-induced aortic valve damage. Four-month-old Trpm4+/+ and Trpm4-/- mice received 10 Gy irradiation at the aortic valve. Cardiac parameters were evaluated by echography until 5 months post-irradiation, then hearts were collected for morphological and histological assessments. At the onset of the protocol, Trpm4+/+ and Trpm4-/- mice exhibited similar maximal aortic valve jet velocity and mean pressure gradient. Five months after irradiation, Trpm4+/+ mice exhibited a significant increase in those parameters, compared to the untreated animals while no variation was detected in Trpm4-/- mice. Morphological analysis revealed that irradiated Trpm4+/+ mice exhibited a 53% significant increase in the aortic valve cusp surface while no significant variation was observed in Trpm4-/- animals. Collagen staining revealed aortic valve fibrosis in irradiated Trpm4+/+ mice but not in irradiated Trpm4-/- animals. It indicates that TRPM4 influences irradiation-induced valvular remodeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...