Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metallomics ; 14(1)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35084501

RESUMEN

Recent medical applications have specific requirements on materials and Nitinol can fulfill them due to its exceptional characteristics, which can be further improved by modifications of the material surface. Various surface nanostructuring methods are utilized to enhance characteristics of oxide layer, which naturally develops on the Nitinol surface, leading to improved biocompatibility and corrosion resistance. This review is focused on studies investigating the behavior of various cell types on surface nanotubes and ordered nanopores prepared by anodic oxidation, a technique allowing fabrication of nanostructures with defined parameters. Results showed that certain dimensions of nanotubes positively affect adhesion and viability of osteoblasts and endothelial cells on the surface, contrary to negative effect on smooth muscle cells, both required by the medical applications. Furthermore, increased antibacterial effect correlated with the nanostructure topography and release rates of Ni ions.


Asunto(s)
Nanoporos , Nanotubos , Aleaciones/química , Aleaciones/farmacología , Materiales Biocompatibles/farmacología , Células Endoteliales , Propiedades de Superficie , Titanio/química , Titanio/farmacología
2.
Diagnostics (Basel) ; 11(2)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668563

RESUMEN

Mannose-binding lectin (MBL) deficiency caused by the variability in the MBL2 gene is responsible for the susceptibility to and severity of various infectious and autoimmune diseases. A combination of six single nucleotide polymorphisms (SNPs) has a major impact on MBL levels in circulation. The aim of this study is to design and validate a sensitive and economical method for determining MBL2 haplogenotypes. The SNaPshot assay is designed and optimized to genotype six SNPs (rs1800451, rs1800450, rs5030737, rs7095891, rs7096206, rs11003125) and is validated by comparing results with Sanger sequencing. Additionally, an algorithm for online calculation of haplogenotype combinations from the determined genotypes is developed. Three hundred and twenty-eight DNA samples from healthy individuals from the Czech population are genotyped. Minor allele frequencies (MAFs) in the Czech population are in accordance with those present in the European population. The SNaPshot assay for MBL2 genotyping is a high-throughput, cost-effective technique that can be used in further genetic-association studies or in clinical practice. Moreover, a freely available online application for the calculation of haplogenotypes from SNPs is developed within the scope of this project.

3.
PLoS One ; 14(7): e0220318, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31344098

RESUMEN

Lectins are a group of ubiquitous proteins which specifically recognize and reversibly bind sugar moieties of glycoprotein and glycolipid constituents on cell surfaces. The mutagenesis approach is often employed to characterize lectin binding properties. As lectins are not enzymes, it is not easy to perform a rapid specificity screening of mutants using chromogenic substrates. It is necessary to use different binding assays such as isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), microscale thermophoresis (MST), enzyme-linked lectin assays (ELLA), or glycan arrays for their characterization. These methods often require fluorescently labeled proteins (MST), highly purified proteins (SPR) or high protein concentrations (ITC). Mutant proteins may often exhibit problematic behaviour, such as poor solubility or low stability. Lectin-based cell agglutination is a simple and low-cost technique which can overcome most of these problems. In this work, a modified method of the agglutination of human erythrocytes and yeast cells with microscopy detection was successfully used for a specificity study of the newly prepared mutant lectin RS-IIL_A22S, which experimentally completed studies on sugar preferences of lectins in the PA-IIL family. Results showed that the sensitivity of this method is comparable with ITC, is able to determine subtle differences in lectin specificity, and works directly in cell lysates. The agglutination method with microscopy detection was validated by comparison of the results with results obtained by agglutination assay in standard 96-well microtiter plate format. In contrast to this assay, the microscopic method can clearly distinguish between hemagglutination and hemolysis. Therefore, this method is suitable for examination of lectins with known hemolytic activity as well as mutant or uncharacterized lectins, which could damage red blood cells. This is due to the experimental arrangement, which includes very short sample incubation time in combination with microscopic detection of agglutinates, that are easily observed by a small portable microscope.


Asunto(s)
Pruebas de Aglutinación , Proteínas Bacterianas/farmacología , Eritrocitos/efectos de los fármacos , Lectinas/farmacología , Levaduras/efectos de los fármacos , Aglutinación/efectos de los fármacos , Pruebas de Aglutinación/métodos , Eritrocitos/citología , Proteínas de Escherichia coli/farmacología , Hemaglutinación/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Microscopía , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Resonancia por Plasmón de Superficie , Levaduras/citología
4.
Proc Natl Acad Sci U S A ; 116(6): 1958-1967, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30670663

RESUMEN

Interactions between glycans and glycan binding proteins are essential for numerous processes in all kingdoms of life. Glycan microarrays are an excellent tool to examine protein-glycan interactions. Here, we present a microbe-focused glycan microarray platform based on oligosaccharides obtained by chemical synthesis. Glycans were generated by combining different carbohydrate synthesis approaches including automated glycan assembly, solution-phase synthesis, and chemoenzymatic methods. The current library of more than 300 glycans is as diverse as the mammalian glycan array from the Consortium for Functional Glycomics and, due to its microbial focus, highly complementary. This glycan platform is essential for the characterization of various classes of glycan binding proteins. Applications of this glycan array platform are highlighted by the characterization of innate immune receptors and bacterial virulence factors as well as the analysis of human humoral immunity to pathogenic glycans.


Asunto(s)
Proteínas Portadoras/química , Análisis por Micromatrices/métodos , Polisacáridos/química , Polisacáridos/inmunología , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Células CHO , Cricetulus , Glicómica , Humanos , Sistema Inmunológico , Lectinas , Oligosacáridos , Polisacáridos/clasificación , Unión Proteica , Proteínas Recombinantes , Especificidad de la Especie
5.
Methods Mol Biol ; 1498: 399-419, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27709592

RESUMEN

Site-directed mutagenesis is a powerful technique which is used to understand the basis of interactions between proteins and their binding partners, as well as to modify these interactions. Methods of rational design that are based on detailed knowledge of the structure of a protein of interest are often used for preliminary investigations of the possible outcomes which can result from the practical application of site-directed mutagenesis. Also, random mutagenesis can be used in tandem with site-directed mutagenesis for an examination of amino acid "hotspots."Lectins are sugar-binding proteins which, among other functions, mediate the recognition of host cells by a pathogen and its adhesion to the host cell surface. Hence, lectins and their binding properties are studied and engineered using site-directed mutagenesis.In this chapter, we describe a site-directed mutagenesis method used for investigating the sugar binding pattern of the PA-IIL lectin from the pathogenic bacterium Pseudomonas aeruginosa. Moreover, procedures for the production and purification of PA-IIL mutants are described, and several basic methods for characterizing the mutants are discussed.


Asunto(s)
Fucosa/genética , Lectinas/genética , Mutagénesis Sitio-Dirigida/métodos , Proteínas Bacterianas/genética , Sitios de Unión/genética , Mutagénesis/genética , Unión Proteica/genética , Pseudomonas aeruginosa/genética
6.
J Comput Aided Mol Des ; 28(9): 951-60, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25015195

RESUMEN

This article focuses on designing mutations of the PA-IIL lectin from Pseudomonas aeruginosa that lead to change in specificity. Following the previous results revealing the importance of the amino acid triad 22-23-24 (so-called specificity-binding loop), saturation in silico mutagenesis was performed, with the intent of finding mutations that increase the lectin's affinity and modify its specificity. For that purpose, a combination of docking, molecular dynamics and binding free energy calculation was used. The combination of methods revealed mutations that changed the performance of the wild-type lectin and its mutants to their preferred partners. The mutation at position 22 resulted in 85% in inactivation of the binding site, and the mutation at 23 did not have strong effects thanks to the side chain being pointed away from the binding site. Molecular dynamics simulations followed by binding free energy calculation were performed on mutants with promising results from docking, and also at those where the amino acid at position 24 was replaced for bulkier or longer polar chain. The key mutants were also prepared in vitro and their binding properties determined by isothermal titration calorimetry. Combination of the used methods proved to be able to predict changes in the lectin performance and helped in explaining the data observed experimentally.


Asunto(s)
Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mutagénesis , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Adhesinas Bacterianas/química , Sitios de Unión , Metabolismo de los Hidratos de Carbono , Simulación por Computador , Diseño Asistido por Computadora , Lectinas/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Pseudomonas aeruginosa/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...