Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2477, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513365

RESUMEN

SCCmec is a large mobile genetic element that includes the mecA gene and confers resistance to ß-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA). There is evidence that SCCmec disseminates among staphylococci, but the transfer mechanisms are unclear. Here, we show that two-component systems mediate the upregulation of natural competence genes in S. aureus under biofilm growth conditions, and this enhances the efficiency of natural transformation. We observe SCCmec transfer via natural transformation from MRSA, and from methicillin-resistant coagulase-negative staphylococci, to methicillin-sensitive S. aureus. The process requires the SCCmec recombinase genes ccrAB, and the stability of the transferred SCCmec varies depending on SCCmec types and recipients. Our results suggest that natural transformation plays a role in the transfer of SCCmec and possibly other mobile genetic elements in S. aureus biofilms.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Proteínas Bacterianas/genética , Biopelículas , Humanos , Resistencia a la Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/genética , Staphylococcus/genética , Staphylococcus aureus/genética
2.
mBio ; 9(5)2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30228237

RESUMEN

Staphylococcus aureus causes various diseases ranging from skin and soft tissue infections to life-threatening infections. Adaptation to the different host niches is controlled by a complex network of transcriptional regulators. Global profiling of condition-dependent transcription revealed adaptation of S. aureus HG001 at the levels of transcription initiation and termination. In particular, deletion of the gene encoding the Rho transcription termination factor triggered a remarkable overall increase in antisense transcription and gene expression changes attributable to indirect regulatory effects. The goal of the present study was a detailed comparative analysis of S. aureus HG001 and its isogenic rho deletion mutant. Proteome analysis revealed significant differences in cellular and extracellular protein profiles, most notably increased amounts of the proteins belonging to the SaeR regulon in the Rho-deficient strain. The SaeRS two-component system acts as a major regulator of virulence gene expression in staphylococci. Higher levels of SaeRS-dependent virulence factors such as adhesins, toxins, and immune evasion proteins in the rho mutant resulted in higher virulence in a murine bacteremia model, which was alleviated in a rho complemented strain. Inhibition of Rho activity by bicyclomycin, a specific inhibitor of Rho activity, also induced the expression of SaeRS-dependent genes, at both the mRNA and protein levels, to the same extent as observed in the rho mutant. Taken together, these findings indicate that activation of the Sae system in the absence of Rho is directly linked to Rho's transcription termination activity and establish a new link between antibiotic action and virulence gene expression in S. aureusIMPORTANCE The major human pathogen Staphylococcus aureus is a widespread commensal bacterium but also the most common cause of nosocomial infections. It adapts to the different host niches through a complex gene regulatory network. We show here that the Rho transcription termination factor, which represses pervasive antisense transcription in various bacteria, including S. aureus, plays a role in controlling SaeRS-dependent virulence gene expression. A Rho-deficient strain produces larger amounts of secreted virulence factors in vitro and shows increased virulence in mice. We also show that treatment of S. aureus with the antibiotic bicyclomycin, which inhibits Rho activity and is effective against Gram-negative bacteria, induces the same changes in the proteome as observed in the Rho-deficient strain. Our results reveal for the first time a link between transcription termination and virulence regulation in S. aureus, which implies a novel mechanism by which an antibiotic can modulate the expression of virulence factors.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Quinasas/metabolismo , Factor Rho/metabolismo , Staphylococcus aureus/genética , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética , Factores de Virulencia/biosíntesis , Animales , Antibacterianos/metabolismo , Bacteriemia/microbiología , Bacteriemia/patología , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Proteínas Quinasas/genética , Proteoma/análisis , Regulón , Factor Rho/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Factores de Transcripción/genética , Virulencia
3.
PLoS Pathog ; 14(3): e1006917, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29543889

RESUMEN

The success of Staphylococcus aureus, as both a human and animal pathogen, stems from its ability to rapidly adapt to a wide spectrum of environmental conditions. Two-component systems (TCSs) play a crucial role in this process. Here, we describe a novel staphylococcal virulence factor, SpdC, an Abi-domain protein, involved in signal sensing and/or transduction. We have uncovered a functional link between the WalKR essential TCS and the SpdC Abi membrane protein. Expression of spdC is positively regulated by the WalKR system and, in turn, SpdC negatively controls WalKR regulon genes, effectively constituting a negative feedback loop. The WalKR system is mainly involved in controlling cell wall metabolism through regulation of autolysin production. We have shown that SpdC inhibits the WalKR-dependent synthesis of four peptidoglycan hydrolases, SceD, SsaA, LytM and AtlA, as well as impacting S. aureus resistance towards lysostaphin and cell wall antibiotics such as oxacillin and tunicamycin. We have also shown that SpdC is required for S. aureus biofilm formation and virulence in a murine septicemia model. Using protein-protein interactions in E. coli as well as subcellular localization in S. aureus, we showed that SpdC and the WalK kinase are both localized at the division septum and that the two proteins interact. In addition to WalK, our results indicate that SpdC also interacts with nine other S. aureus histidine kinases, suggesting that this membrane protein may act as a global regulator of TCS activity. Indeed, using RNA-Seq analysis, we showed that SpdC controls the expression of approximately one hundred genes in S. aureus, many of which belong to TCS regulons.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/metabolismo , Sepsis/microbiología , Infecciones Estafilocócicas/microbiología , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Femenino , Histidina Quinasa/genética , Ratones , Fosforilación , Regulón , Sepsis/metabolismo , Transducción de Señal , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidad , Virulencia , Factores de Virulencia/genética
4.
Front Microbiol ; 9: 3135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619203

RESUMEN

Oenococcus oeni is a lactic acid bacterium responsible for malolactic fermentation of wine. While many stress response mechanisms implemented by O. oeni during wine adaptation have been described, little is known about their regulation. CtsR is the only regulator of stress response genes identified to date in O. oeni. Extensively characterized in Bacillus subtilis, the CtsR repressor is active as a dimer at 37°C and degraded at higher temperatures by a proteolytic mechanism involving two adapter proteins, McsA and McsB, together with the ClpCP complex. The O. oeni genome does not encode orthologs of these adapter proteins and the regulation of CtsR activity remains unknown. In this study, we investigate CtsR function in O. oeni by using antisense RNA silencing in vivo to modulate ctsR gene expression. Inhibition of ctsR gene expression by asRNA leads to a significant loss in cultivability after heat shock (58%) and acid shock (59%) highlighting the key role of CtsR in the O. oeni stress response. Regulation of CtsR activity was studied using a heterologous expression system to demonstrate that O. oeni CtsR controls expression and stress induction of the O. oeni hsp18 gene when produced in a ctsR-deficient B. subtilis strain. Under heat stress conditions, O. oeni CtsR acts as a temperature sensor and is inactivated at growth temperatures above 33°C. Finally, using an E. coli bacterial two-hybrid system, we showed that CtsR and ClpL1 interact, suggesting a key role for ClpL1 in controlling CtsR activity in O. oeni.

5.
J Vis Exp ; (121)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28362383

RESUMEN

One important feature of the major opportunistic human pathogen Staphylococcus aureus is its extraordinary ability to rapidly acquire resistance to antibiotics. Genomic studies reveal that S. aureus carries many virulence and resistance genes located in mobile genetic elements, suggesting that horizontal gene transfer (HGT) plays a critical role in S. aureus evolution. However, a full and detailed description of the methodology used to study HGT in S. aureus is still lacking, especially regarding natural transformation, which has been recently reported in this bacterium. This work describes three protocols that are useful for the in vitro investigation of HGT in S. aureus: conjugation, phage transduction, and natural transformation. To this aim, the cfr gene (chloramphenicol/florfenicol resistance), which confers the Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A (PhLOPSA)-resistance phenotype, was used. Understanding the mechanisms through which S. aureus transfers genetic materials to other strains is essential to comprehending the rapid acquisition of resistance and helps to clarify the modes of dissemination reported in surveillance programs or to further predict the spreading mode in the future.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Transferencia de Gen Horizontal , Técnicas Genéticas , Staphylococcus aureus/genética , Antibacterianos/farmacología , Conjugación Genética/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Fagos de Staphylococcus/genética , Staphylococcus aureus/efectos de los fármacos , Tianfenicol/análogos & derivados , Tianfenicol/farmacología , Transducción Genética
6.
PLoS Genet ; 12(4): e1005962, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27035918

RESUMEN

Staphylococcus aureus is a major pathogen that colonizes about 20% of the human population. Intriguingly, this Gram-positive bacterium can survive and thrive under a wide range of different conditions, both inside and outside the human body. Here, we investigated the transcriptional adaptation of S. aureus HG001, a derivative of strain NCTC 8325, across experimental conditions ranging from optimal growth in vitro to intracellular growth in host cells. These data establish an extensive repertoire of transcription units and non-coding RNAs, a classification of 1412 promoters according to their dependence on the RNA polymerase sigma factors SigA or SigB, and allow identification of new potential targets for several known transcription factors. In particular, this study revealed a relatively low abundance of antisense RNAs in S. aureus, where they overlap only 6% of the coding genes, and only 19 antisense RNAs not co-transcribed with other genes were found. Promoter analysis and comparison with Bacillus subtilis links the small number of antisense RNAs to a less profound impact of alternative sigma factors in S. aureus. Furthermore, we revealed that Rho-dependent transcription termination suppresses pervasive antisense transcription, presumably originating from abundant spurious transcription initiation in this A+T-rich genome, which would otherwise affect expression of the overlapped genes. In summary, our study provides genome-wide information on transcriptional regulation and non-coding RNAs in S. aureus as well as new insights into the biological function of Rho and the implications of spurious transcription in bacteria.


Asunto(s)
Staphylococcus aureus/genética , Transcriptoma , Sitios de Unión , Northern Blotting , Expresión Génica , Genes Bacterianos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
7.
PLoS One ; 11(3): e0151449, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26999783

RESUMEN

The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene cluster, walRKJ.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/genética , Transcripción Genética , Secuencia de Bases , Biopelículas/crecimiento & desarrollo , División Celular , Membrana Celular/metabolismo , Genes Bacterianos , Sitios Genéticos , Datos de Secuencia Molecular , Mutación/genética , Operón/genética , Filogenia , Regiones Promotoras Genéticas/genética , Unión Proteica , Transporte de Proteínas , Staphylococcus aureus/citología , Staphylococcus aureus/metabolismo , Fracciones Subcelulares/metabolismo
8.
Appl Environ Microbiol ; 82(1): 18-26, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26452552

RESUMEN

Oenococcus oeni is a wine-associated lactic acid bacterium mostly responsible for malolactic fermentation in wine. In wine, O. oeni grows in an environment hostile to bacterial growth (low pH, low temperature, and ethanol) that induces stress response mechanisms. To survive, O. oeni is known to set up transitional stress response mechanisms through the synthesis of heat stress proteins (HSPs) encoded by the hsp genes, notably a unique small HSP named Lo18. Despite the availability of the genome sequence, characterization of O. oeni genes is limited, and little is known about the in vivo role of Lo18. Due to the lack of genetic tools for O. oeni, an efficient expression vector in O. oeni is still lacking, and deletion or inactivation of the hsp18 gene is not presently practicable. As an alternative approach, with the goal of understanding the biological function of the O. oeni hsp18 gene in vivo, we have developed an expression vector to produce antisense RNA targeting of hsp18 mRNA. Recombinant strains were exposed to multiple stresses inducing hsp18 gene expression: heat shock and acid shock. We showed that antisense attenuation of hsp18 affects O. oeni survival under stress conditions. These results confirm the involvement of Lo18 in heat and acid tolerance of O. oeni. Results of anisotropy experiments also confirm a membrane-protective role for Lo18, as previous observations had already suggested. This study describes a new, efficient tool to demonstrate the use of antisense technology for modulating gene expression in O. oeni.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Ácido Láctico/metabolismo , Oenococcus/metabolismo , ARN sin Sentido/metabolismo , Vino/microbiología , Proteínas Bacterianas/genética , Etanol/metabolismo , Fermentación , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , Oenococcus/genética , ARN sin Sentido/genética
9.
PLoS Pathog ; 8(11): e1003003, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133387

RESUMEN

It has long been a question whether Staphylococcus aureus, a major human pathogen, is able to develop natural competence for transformation by DNA. We previously showed that a novel staphylococcal secondary sigma factor, SigH, was a likely key component for competence development, but the corresponding gene appeared to be cryptic as its expression could not be detected during growth under standard laboratory conditions. Here, we have uncovered two distinct mechanisms allowing activation of SigH production in a minor fraction of the bacterial cell population. The first is a chromosomal gene duplication rearrangement occurring spontaneously at a low frequency [≤10(-5)], generating expression of a new chimeric sigH gene. The second involves post-transcriptional regulation through an upstream inverted repeat sequence, effectively suppressing expression of the sigH gene. Importantly, we have demonstrated for the first time that S. aureus cells producing active SigH become competent for transformation by plasmid or chromosomal DNA, which requires the expression of SigH-controlled competence genes. Additionally, using DNA from the N315 MRSA strain, we successfully transferred the full length SCCmecII element through natural transformation to a methicillin-sensitive strain, conferring methicillin resistance to the resulting S. aureus transformants. Taken together, we propose a unique model for staphylococcal competence regulation by SigH that could help explain the acquisition of antibiotic resistance genes through horizontal gene transfer in this important pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , ADN Bacteriano/genética , Duplicación de Gen , Factor sigma/genética , Staphylococcus aureus/genética , Transformación Bacteriana , Proteínas Bacterianas/biosíntesis , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Humanos , Factor sigma/biosíntesis , Staphylococcus aureus/metabolismo
10.
Infect Immun ; 80(10): 3438-53, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22825451

RESUMEN

The WalKR two-component system is essential for the viability of Staphylococcus aureus, playing a central role in controlling cell wall metabolism. We produced a constitutively active form of WalR in S. aureus through a phosphomimetic amino acid replacement (WalR(c), D55E). The strain displayed significantly increased biofilm formation and alpha-hemolytic activity. Transcriptome analysis was used to determine the full extent of the WalKR regulon, revealing positive regulation of major virulence genes involved in host matrix interactions (efb, emp, fnbA, and fnbB), cytolysis (hlgACB, hla, and hlb), and innate immune defense evasion (scn, chp, and sbi), through activation of the SaeSR two-component system. The impact on pathogenesis of varying cell envelope dynamics was studied using a murine infection model, showing that strains producing constitutively active WalR(c) are strongly diminished in their virulence due to early triggering of the host inflammatory response associated with higher levels of released peptidoglycan fragments. Indeed, neutrophil recruitment and proinflammatory cytokine production were significantly increased when the constitutively active walR(c) allele was expressed, leading to enhanced bacterial clearance. Taken together, our results indicate that WalKR play an important role in virulence and eliciting the host inflammatory response by controlling autolytic activity.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Inflamación/metabolismo , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Citocinas/metabolismo , Huella de ADN , Desoxirribonucleasa I , Escherichia coli K12/clasificación , Escherichia coli K12/metabolismo , Citometría de Flujo , Humanos , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Factores de Virulencia/genética
11.
Antimicrob Agents Chemother ; 56(2): 1047-58, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22123691

RESUMEN

The GraSR two-component system (TCS) controls cationic antimicrobial peptide (CAMP) resistance in Staphylococcus aureus through the synthesis of enzymes that increase bacterial cell surface positive charges, by d-alanylation of teichoic acids and lysylination of phosphatidylglycerol, leading to electrostatic repulsion of CAMPs. The GraS histidine kinase belongs to the "intramembrane-sensing kinases" subfamily, with a structure featuring a short amino-terminal sensing domain, and two transmembrane helices separated only by a short loop, thought to be buried in the cytoplasmic membrane. The GraSR TCS is in fact a multicomponent system, requiring at least one accessory protein, GraX, in order to function, which, as we show here, acts by signaling through the GraS kinase. The graXRS genes are located immediately upstream from genes encoding an ABC transporter, vraFG, whose expression is controlled by GraSR. We demonstrated that the VraFG transporter does not act as a detoxification module, as it cannot confer resistance when produced on its own, but instead plays an essential role by sensing the presence of CAMPs and signaling through GraS to activate GraR-dependent transcription. A bacterial two-hybrid approach, designed to identify interactions between the GraXSR and VraFG proteins, was carried out in order to understand how they act in detecting and signaling the presence of CAMPs. We identified many interactions between these protein pairs, notably between the GraS kinase and both GraX and the VraG permease, indicating the existence of an original five-component system involved in CAMP sensing and signal transduction to promote S. aureus resistance.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica , Transducción de Señal , Staphylococcus aureus/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Histidina Quinasa , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mutagénesis Sitio-Dirigida , Plásmidos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
12.
PLoS One ; 6(7): e21323, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21765893

RESUMEN

The GraS/GraR two-component system has been shown to control cationic antimicrobial peptide (CAMP) resistance in the major human pathogen Staphylococcus aureus. We demonstrated that graX, also involved in CAMP resistance and cotranscribed with graRS, encodes a regulatory cofactor of the GraSR signaling pathway, effectively constituting a three-component system. We identified a highly conserved ten base pair palindromic sequence (5' ACAAA TTTGT 3') located upstream from GraR-regulated genes (mprF and the dlt and vraFG operons), which we show to be essential for transcriptional regulation by GraR and induction in response to CAMPs, suggesting it is the likely GraR binding site. Genome-based predictions and transcriptome analysis revealed several novel GraR target genes. We also found that the GraSR TCS is required for growth of S. aureus at high temperatures and resistance to oxidative stress. The GraSR system has previously been shown to play a role in S. aureus pathogenesis and we have uncovered previously unsuspected links with the AgrCA peptide quorum-sensing system controlling virulence gene expression. We also show that the GraSR TCS controls stress reponse and cell wall metabolism signal transduction pathways, sharing an extensive overlap with the WalKR regulon. This is the first report showing a role for the GraSR TCS in high temperature and oxidative stress survival and linking this system to stress response, cell wall and pathogenesis control pathways.


Asunto(s)
Pared Celular/metabolismo , Regulón/genética , Transducción de Señal/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Estrés Fisiológico/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Pared Celular/efectos de los fármacos , Pared Celular/genética , Colistina/farmacología , Secuencia de Consenso/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos/genética , Homeostasis/efectos de los fármacos , Humanos , Datos de Secuencia Molecular , Operón/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Temperatura , Virulencia/efectos de los fármacos , Virulencia/genética
13.
Mol Microbiol ; 81(3): 602-22, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21696458

RESUMEN

Two-component systems (TCSs) are key regulatory pathways allowing bacteria to adapt their genetic expression to environmental changes. Bacitracin, a cyclic dodecylpeptide antibiotic, binds to undecaprenyl pyrophosphate, the lipid carrier for cell wall precursors, effectively inhibiting peptidoglycan biosynthesis. We have identified a novel and previously uncharacterized TCS in the major human pathogen Staphylococcus aureus that we show to be essential for bacitracin and nisin resistance: the BraS/BraR system (Bacitracin resistance associated; SA2417/SA2418). The braRS genes are located immediately upstream from genes encoding an ABC transporter, accordingly designated BraDE. We have shown that the BraSR/BraDE module is a key bacitracin and nisin resistance determinant in S. aureus. In the presence of low antibiotic concentrations, BraSR activate transcription of two operons encoding ABC transporters: braDE and vraDE. We identified a highly conserved imperfect palindromic sequence upstream from the braDE and vraDE promoter sequences, essential for their transcriptional activation by BraSR, suggesting it is the likely BraR binding site. We demonstrated that the two ABC transporters play distinct and original roles in antibiotic resistance: BraDE is involved in bacitracin sensing and signalling through BraSR, whereas VraDE acts specifically as a detoxification module and is sufficient to confer bacitracin and nisin resistance when produced on its own. We show that these processes require functional BraD and VraD nucleotide-binding domain proteins, and that the large extracellular loop of VraE confers its specificity in bacitracin resistance. This is the first example of a TCS associated with two ABC transporters playing separate roles in signal transduction and antibiotic resistance.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacitracina/metabolismo , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Nisina/metabolismo , Staphylococcus aureus/metabolismo , Adaptación Fisiológica , Secuencia de Aminoácidos , Bacitracina/farmacología , Secuencia de Bases , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Datos de Secuencia Molecular , Familia de Multigenes , Nisina/farmacología , Operón , Regiones Promotoras Genéticas , Alineación de Secuencia , Transducción de Señal , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética
14.
Mol Microbiol ; 81(1): 8-22, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21564335

RESUMEN

Since their inception 20 years ago, the biennial blast (Bacterial Locomotion and Signal Transduction) meetings instantly became the place to be for exchanging and sharing the latest developments in the field of bacterial motility and signalling. At the 11th edition, held last January in New Orleans, LA, researchers reported on the myriad of mechanisms involved in bacterial movement, sensing and adaptation, ranging from the molecular level to multicellular behaviour. New insights into bacterial signalling phenomena were gained, revealing previously unsuspected layers of complexity, particularly in mechanisms ensuring signal transduction fidelity and novel links to metabolic processes.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Locomoción , Transducción de Señal , Adaptación Fisiológica , Modelos Biológicos , Nueva Orleans
15.
PLoS One ; 6(2): e17054, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21386961

RESUMEN

The WalKR two-component system is essential for viability of Staphylococcus aureus, a major pathogen. We have shown that WalKR acts as the master controller of peptidoglycan metabolism, yet none of the identified regulon genes explain its requirement for cell viability. Transmission electron micrographs revealed cell wall thickening and aberrant division septa in the absence of WalKR, suggesting its requirement may be linked to its role in coordinating cell wall metabolism and cell division. We therefore tested whether uncoupling autolysin gene expression from WalKR-dependent regulation could compensate for its essential nature. Uncoupled expression of genes encoding lytic transglycosylases or amidases did not restore growth to a WalKR-depleted strain. We identified only two WalKR-regulon genes whose expression restored cell viability in the absence of WalKR: lytM and ssaA. Neither of these two genes are essential under our conditions and a ΔlytM ΔssaA mutant does not present any growth defect. LytM is a glycyl-glycyl endopeptidase, hydrolyzing the pentaglycine interpeptide crossbridge, and SsaA belongs to the CHAP amidase family, members of which such as LysK and LytA have been shown to have D-alanyl-glycyl endopeptidase activity, cleaving between the crossbridge and the stem peptide. Taken together, our results strongly suggest that peptidoglycan crosslinking relaxation through crossbridge hydrolysis plays a crucial role in the essential requirement of the WalKR system for cell viability.


Asunto(s)
Viabilidad Microbiana , Peptidoglicano/metabolismo , Multimerización de Proteína/fisiología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Metabolismo de los Hidratos de Carbono/genética , Secuencia de Carbohidratos/fisiología , Pared Celular/enzimología , Pared Celular/metabolismo , Endopeptidasas/metabolismo , Endopeptidasas/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Hidrolasas/genética , Hidrolasas/metabolismo , Hidrólisis , Viabilidad Microbiana/genética , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Organismos Modificados Genéticamente , Peptidoglicano/química , Staphylococcus aureus/genética
16.
PLoS Pathog ; 6(5): e1000894, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20485570

RESUMEN

We have characterized a novel pleiotropic role for CymR, the master regulator of cysteine metabolism. We show here that CymR plays an important role both in stress response and virulence of Staphylococcus aureus. Genes involved in detoxification processes, including oxidative stress response and metal ion homeostasis, were differentially expressed in a DeltacymR mutant. Deletion of cymR resulted in increased sensitivity to hydrogen peroxide-, disulfide-, tellurite- and copper-induced stresses. Estimation of metabolite pools suggests that this heightened sensitivity could be the result of profound metabolic changes in the DeltacymR mutant, with an increase in the intracellular cysteine pool and hydrogen sulfide formation. Since resistance to oxidative stress within the host organism is important for pathogen survival, we investigated the role of CymR during the infectious process. Our results indicate that the deletion of cymR promotes survival of S. aureus inside macrophages, whereas virulence of the DeltacymR mutant is highly impaired in mice. These data indicate that CymR plays a major role in virulence and adaptation of S. aureus for survival within the host.


Asunto(s)
Cistina/metabolismo , Genes Bacterianos/fisiología , Macrófagos/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Animales , Línea Celular , Cobre/farmacología , Cistina/farmacología , Disulfuros/farmacología , Femenino , Eliminación de Gen , Homeostasis/fisiología , Peróxido de Hidrógeno/farmacología , Macrófagos/citología , Ratones , Ratones Endogámicos BALB C , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Staphylococcus aureus/patogenicidad , Telurio/farmacología , Regulación hacia Arriba/fisiología , Virulencia
17.
J Antibiot (Tokyo) ; 63(3): 127-34, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20111065

RESUMEN

The WalK/WalR (YycG/YycF) two-component system, which is essential for cell viability, is highly conserved and specific to low-GC percentage of Gram-positive bacteria, making it an attractive target for novel antimicrobial compounds. Recent work has shown that WalK/WalR exerts an effect as a master regulatory system in controlling and coordinating cell wall metabolism with cell division in Bacillus subtilis and Staphylococcus aureus. In this paper, we develop a high-throughput screening system for WalR inhibitors and identify two novel inhibitors targeting the WalR response regulator (RR): walrycin A (4-methoxy-1-naphthol) and walrycin B (1,6-dimethyl-3-[4-(trifluoromethyl)phenyl]pyrimido[5,4-e][1,2,4]triazine-5,7-dione). Addition of these compounds simultaneously affects the expression of WalR regulon genes, leading to phenotypes consistent with those of cells starved for the WalK/WalR system and having a bactericidal effect. B. subtilis cells form extremely long aseptate filaments and S. aureus cells form large aggregates under these conditions. These results show that walrycins A and B are the first antibacterial agents targeting WalR in B. subtilis and S. aureus.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Proteínas Bacterianas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , Cromatografía en Gel , Sondas de ADN , ADN Bacteriano/metabolismo , Evaluación Preclínica de Medicamentos , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Colorantes Fluorescentes , Bacterias Grampositivas/genética , Bacterias Grampositivas/fisiología , Pruebas de Sensibilidad Microbiana , Fosforilación , Plásmidos/efectos de los fármacos , Plásmidos/genética , ARN Bacteriano/biosíntesis , ARN Bacteriano/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Fluorescencia , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Tripsina/química
18.
Microbes Environ ; 25(2): 75-82, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21576857

RESUMEN

Staphylococcus aureus, a major opportunistic pathogen responsible for a broad spectrum of infections, naturally inhabits the human nasal cavity in about 30% of the population. The unique adaptive potential displayed by S. aureus has made it one of the major causes of nosocomial infections today, emphasized by the rapid emergence of multiple antibiotic-resistant strains over the past few decades. The uncanny ability to adapt to harsh environments is essential for staphylococcal persistence in infections or as a commensal, and a growing body of evidence has revealed critical roles in this process for cellular structural dynamics, and population heterogeneity. These two exciting areas of research are now being explored to identify new molecular mechanisms governing these adaptational strategies.


Asunto(s)
Adaptación Fisiológica/fisiología , Membrana Celular/metabolismo , ADN Bacteriano/metabolismo , Variación Genética/fisiología , Staphylococcus aureus/fisiología , Estrés Fisiológico/fisiología , Infección Hospitalaria/microbiología , ADN Bacteriano/genética , Farmacorresistencia Bacteriana Múltiple , Variación Genética/genética , Humanos , Cavidad Nasal/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/patogenicidad
19.
J Bacteriol ; 192(3): 896-900, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19933364

RESUMEN

Lactobacillus plantarum ctsR was characterized. ctsR was found to be cotranscribed with clpC and induced in response to various abiotic stresses. ctsR deletion conferred a heat-sensitive phenotype with peculiar cell morphological features. The transcriptional pattern of putative CtsR regulon genes was examined in the Delta ctsR mutant. Direct CtsR-dependent regulation was demonstrated by DNA-binding assays using recombinant CtsR and the promoters of the ctsR-clpC operon and hsp1.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Lactobacillus plantarum/metabolismo , Regulón/fisiología , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de Choque Térmico , Lactobacillus plantarum/genética , Lactobacillus plantarum/ultraestructura , Microscopía de Fuerza Atómica , Regiones Promotoras Genéticas/genética , Unión Proteica , Regulón/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...