Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Signal Transduct Target Ther ; 9(1): 91, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627387

RESUMEN

Without intervention, a considerable proportion of patients with metabolism-associated fatty liver disease (MAFLD) will progress from simple steatosis to metabolism-associated steatohepatitis (MASH), liver fibrosis, and even hepatocellular carcinoma. However, the molecular mechanisms that control progressive MAFLD have yet to be fully determined. Here, we unraveled that the expression of the N6-methyladenosine (m6A) methyltransferase METTL14 is remarkably downregulated in the livers of both patients and several murine models of MAFLD, whereas hepatocyte-specific depletion of this methyltransferase aggravated lipid accumulation, liver injury, and fibrosis. Conversely, hepatic Mettl14 overexpression alleviated the above pathophysiological changes in mice fed on a high-fat diet (HFD). Notably, in vivo and in vitro mechanistic studies indicated that METTL14 downregulation decreased the level of GLS2 by affecting the translation efficiency mediated by YTHDF1 in an m6A-depedent manner, which might help to form an oxidative stress microenvironment and accordingly recruit Cx3cr1+Ccr2+ monocyte-derived macrophages (Mo-macs). In detail, Cx3cr1+Ccr2+ Mo-macs can be categorized into M1-like macrophages and S100A4-positive macrophages and then further activate hepatic stellate cells (HSCs) to promote liver fibrosis. Further experiments revealed that CX3CR1 can activate the transcription of S100A4 via CX3CR1/MyD88/NF-κB signaling pathway in Cx3cr1+Ccr2+ Mo-macs. Restoration of METTL14 or GLS2, or interfering with this signal transduction pathway such as inhibiting MyD88 could ameliorate liver injuries and fibrosis. Taken together, these findings indicate potential therapies for the treatment of MAFLD progression.


Asunto(s)
FN-kappa B , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Regulación hacia Abajo/genética , Cirrosis Hepática/metabolismo , Macrófagos/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores de Quimiocina , Proteína de Unión al Calcio S100A4
2.
Clin Transl Med ; 13(12): e1518, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38148658

RESUMEN

BACKGROUND: Sex disparities constitute a significant issue in hepatocellular carcinoma (HCC). However, the mechanism of gender dimorphism in HCC is still not completely understood. METHODS: 5-Hydroxymethylcytosine (5hmC)-Seal technology was utilised to detect the global 5hmC levels from four female and four male HCC samples. Methylation of XIST was detected by Sequenom MassARRAY methylation profiling between HCC tissues (T) and adjacent normal liver tissues (L). The role of Tet methylcytosine dioxygenase 2 (TET2) was investigated using diethylnitrosamine (DEN)-administered Tet2-/- female mice, which regulated XIST in hepatocarcinogenesis. All statistical analyses were carried out by GraphPad Prism 9.0 and SPSS version 19.0 software. RESULTS: The results demonstrated that the numbers of 5hmC reads in the first exon of XIST from female HCC tissues (T) were remarkably lower than that in female adjacent normal liver tissues (L). Correspondingly, DNA methylation level of XIST first exon region was significantly increased in female T than in L. By contrast, no significant change was observed in male HCC patients. Compared to L, the expression of XIST in T was also significantly downregulated. Female patients with higher XIST in HCC had a higher overall survival (OS) and more extended recurrence-free survival (RFS). Moreover, TET2 can interact with YY1 binding to the promoter region of XIST and maintain the hypomethylation state of XIST. In addition, DEN-administered Tet2-/- mice developed more tumours than controls in female mice. CONCLUSIONS: Our study provided that YY1 and TET2 could interact to form protein complexes binding to the promoter region of XIST, regulating the methylation level of XIST and then affecting the expression of XIST. This research will provide a new clue for studying sex disparities in hepatocarcinogenesis. HIGHLIGHTS: XIST was significantly downregulated in HCC tissues and had gender disparity. Methylation levels in the XIST first exon were higher in female HCC tissues, but no significant change in male HCC patients. The TET2-YY1 complex regulate XIST expression in female hepatocytes. Other ways regulate XIST expression in male hepatocytes.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cromosomas/metabolismo , Metilación de ADN/genética , Neoplasias Hepáticas/metabolismo , Caracteres Sexuales
3.
Hepatol Commun ; 7(2): e0046, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345896

RESUMEN

NAFLD is a series of liver disorders, and it has become the most prevalent hepatic disease to date. However, there are no approved and effective pharmaceuticals for NAFLD owing to a poor understanding of its pathological mechanisms. While emerging studies have demonstrated that m6A modification is highly associated with NAFLD. In this review, we summarize the general profile of NAFLD and m6A modification, and the role of m6A regulators including erasers, writers, and readers in NAFLD. Finally, we also highlight the clinical significance of m6A in NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Metilación de ARN
4.
Anal Cell Pathol (Amst) ; 2017: 9043134, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29147638

RESUMEN

The existing methods for detecting formaldehyde (FA) in brain samples are expensive and require sophisticated experimental procedures. Here, we established a highly sensitive and selective spectrophotometric method, which is based on a reaction in which FA reacts with colorless reagent 4-amino-3-penten-2-one (Fluoral-P) to produce a yellow compound, 3,5-diacetyl-1,4-dihydrolutidine (DDL), which can be detected by a spectrophotometer at 420 nm at room temperature. The sensitive response time point was found to be at the first hour, and the optimal pH of derivative reaction was pH 6.0. The limit of detection (LOD) and the limits of quantization (LOQ) for detecting FA were 0.5 µM and 2.5 µM, respectively. Using this method, an abnormally high level of FA was detected in both the brains of FA-injected mice and autopsy hippocampus tissues from patients with Alzheimer's disease. This finding suggests that the modified Fluoral-P method is effective for measuring levels of FA in the brains.


Asunto(s)
Encéfalo/metabolismo , Formaldehído/metabolismo , Espectrofotometría/métodos , Animales , Formaldehído/química , Formaldehído/toxicidad , Humanos , Indicadores y Reactivos , Límite de Detección , Masculino , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Espectrofotometría Ultravioleta , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...