Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 186: 114317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729709

RESUMEN

Lipids play a pivotal role in the nutrition of preterm infants, acting as a primary energy source. Due to their underdeveloped gastrointestinal systems, lipid malabsorption is common, leading to insufficient energy intake and slowed growth. Therefore, it is critical to explore the reasons behind the low lipid absorption rate in formulas for preterm infants. This study utilized a simulated in intro gastrointestinal digestion model to assess the differences in lipid digestion between preterm human milk and various infant formulas. Results showed that the fatty acid release rates for formulas IF3, IF5, and IF7 were 58.90 %, 56.58 %, and 66.71 %, respectively, lower than human milk's 72.31 %. The primary free fatty acids (FFA) and 2-monoacylglycerol (2-MAG) released during digestion were C14:0, C16:0, C18:0, C18:1n-9, and C18:2n-6, in both human milk and formulas. Notably, the higher release of C16:0 in formulas may disrupt fatty acid balance, impacting lipid absorption. Further investigations are necessary to elucidate lipid absorption differences, which will inform the optimization of lipid content in preterm infant formulas.


Asunto(s)
Digestión , Fórmulas Infantiles , Recien Nacido Prematuro , Leche Humana , Leche Humana/química , Leche Humana/metabolismo , Humanos , Fórmulas Infantiles/química , Recién Nacido , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Lípidos/análisis , Ácidos Grasos no Esterificados/análisis , Ácidos Grasos no Esterificados/metabolismo , Metabolismo de los Lípidos , Tracto Gastrointestinal/metabolismo , Modelos Biológicos , Monoglicéridos/metabolismo , Monoglicéridos/análisis , Grasas de la Dieta/metabolismo , Grasas de la Dieta/análisis
2.
J Food Sci ; 86(3): 923-931, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33590491

RESUMEN

Whey protein concentrate (WPC) has been widely studied as a biodegradable bio-based packaging material in the food industry. In this study, different whey protein films were obtained through physical, chemical, enzymatic, and composite modifications. The molecular structure, micro-morphology, mechanical properties, barrier properties, and other characteristics of the films were evaluated. The results illustrated that the thickness of WPC with composite modification increased and the transmittance decreased, but the mechanical properties and barrier properties were more prominent. The WPC film prepared by physical modification combined with transglutaminase has the best film-forming effect, the tensile strength (TS) was 5.45 MPa, the elongation at break (EAB) was 25.19%, the WVP was 5.53 g·mm/m2 ·hr·kPa, and the Oxygen permeability (OP) was 1.83 meq/K, and its microstructure was and uniform. In addition, based on the the results of SDS-PAGE and Fourier transform infrared spectroscopy (FTIR), the intermolecular and intramolecular interactions of various modification methods on WPC were studied, thus contributing to analyze the properties of the film. This study provides theoretical basis and technical support for the industrial production of protein-based films.


Asunto(s)
Embalaje de Alimentos/instrumentación , Proteína de Suero de Leche/química , Fenómenos Mecánicos , Estructura Molecular , Permeabilidad , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Transglutaminasas
3.
J Food Sci Technol ; 55(3): 1021-1027, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29487444

RESUMEN

Plastein reaction is a modification reaction that can improve the functional properties of protein hydrolysate. The product of the reaction is a thixotropic aggregation of peptides. This study investigated the formation condition of soybean-whey plastein and bile acid binding capacity of plastein. Soy protein and whey protein were hydrolyzed by pepsin. The mixture (1:1, w/w) of two hydrolysates was modified by pepsin again. After the reaction, the decrease in free amino groups and the turbidity of the modified hydrolysate were measured to obtain appropriate reaction condition. Results showed that the concentration of hydrolysates 40% (w/v), enzyme ratio of 2.0 KU/g protein, pH 5.0, 37 °C, reaction time of 3.0 h respectively, were showed maximum changes in protein hydrolysates. Tricine SDS-PAGE analysis under denaturing conditions revealed that whey protein was more sensitive to pepsin and yielded different polypeptides (PPs) of molecular weight ranged from 3.5-17 kDa. However, a high molecular weight PP was completely hydrolyzed while PPs of 14.2-26 kDa were partially digested after pepsin treatment. Native page analysis further revealed the presence of a high-molecular weight PP in crude and purified plastein product. The bile acid binding capacity was improved by the plastein reaction. The amount of binding sodium deoxycholate, sodium taurocholate, and sodium cholate were 0.75, 2.0 and 1.87 µmol/100 mg respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA