RESUMEN
The Internet's development has prompted social media to become an essential channel for disseminating disaster-related information. Increasing the accuracy of emotional polarity recognition in tweets is conducive to the government or rescue organizations understanding the public's demands and responding appropriately. Existing sentiment analysis models have some limitations of applicability. Therefore, this research proposes an IDBO-CNN-BiLSTM model combining the swarm intelligence optimization algorithm and deep learning methods. First, the Dung Beetle Optimization (DBO) algorithm is improved by adopting the Latin hypercube sampling, integrating the Osprey Optimization Algorithm (OOA), and introducing an adaptive Gaussian-Cauchy mixture mutation disturbance. The improved DBO (IDBO) algorithm is then utilized to optimize the Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) model's hyperparameters. Finally, the IDBO-CNN-BiLSTM model is constructed to classify the emotional tendencies of tweets associated with the Hurricane Harvey event. The empirical analysis indicates that the proposed model achieves an accuracy of 0.8033, outperforming other single and hybrid models. In contrast with the GWO, WOA, and DBO algorithms, the accuracy is enhanced by 2.89%, 2.82%, and 2.72%, respectively. This study proves that the IDBO-CNN-BiLSTM model can be applied to assist emergency decision-making in natural disasters.
RESUMEN
When emergencies are widely discussed and shared, it may lead to conflicting opinions and negative emotions among internet users. Accurately predicting sudden network public opinion events is of great importance. Therefore, this paper constructs a hybrid forecasting model to solve this problem. First, this model introduces an improved inertia weight and an adaptive variation operation to enhance the Particle Swarm Optimization (PSO) algorithm. Then, the improved PSO (IPSO) algorithm optimizes the parameters of the Long Short-Term Memory (LSTM) neural network. Finally, the IPSO-LSTM hybrid prediction model is constructed to forecast and analyze emergency public opinion dissemination trends. The experimental outcomes indicate that the IPSO-LSTM model surpasses others and has high prediction accuracy. In the four emergency predictions we select, the MAPE value of IPSO-LSTM is 74.27% better than that of BP, 33.96% better than that of LSTM, and 13.59% better than that of PSO-LSTM on average. This study aims to assist authorities in quickly identifying potential public opinion crises, developing effective strategies, and promoting sustainable and positive growth in the network environment.
Asunto(s)
Urgencias Médicas , Opinión Pública , Humanos , Algoritmos , Procesos de Grupo , InternetRESUMEN
The spatial pooling method such as spatial pyramid matching (SPM) is very crucial in the bag of features model used in image classification. SPM partitions the image into a set of regular grids and assumes that the spatial layout of all visual words obey the uniform distribution over these regular grids. However, in practice, we consider that different visual words should obey different spatial layout distributions. To improve SPM, we develop a novel spatial pooling method, namely spatial distribution pooling (SDP). The proposed SDP method uses an extension model of Gauss mixture model to estimate the spatial layout distributions of the visual vocabulary. For each visual word type, SDP can generate a set of flexible grids rather than the regular grids from the traditional SPM. Furthermore, we can compute the grid weights for visual word tokens according to their spatial coordinates. The experimental results demonstrate that SDP outperforms the traditional spatial pooling methods, and is competitive with the state-of-the-art classification accuracy on several challenging image datasets.