Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(8): 2101-2104, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621086

RESUMEN

The introduction of cantilever-based fiber-optic microphones (FOMs) has proven to be effective in acoustic sensing. Further improvements in cantilevers face two key constraints: the challenge of achieving minimal sizes with sufficient reflective area and the trade-off between sensitivity and response bandwidth. Herein, we present a geometry optimization framework for a cantilever-based FOM that addresses this issue. Employing drumstick-shaped cantilevers housed within a Fabry-Perot (F-P) interferometric structure, we showcase a heightened sensitivity of 302.8 mV/Pa at 1 kHz and a minimum detectable acoustic pressure (MDP) of 2.35 µPa/H z. Notably, these metrics outperform those of the original rectangular cantilever with identical dimensions. Furthermore, our proposed cantilever effectively mitigates the reduction in resonance frequencies, thereby improving the response bandwidth. This geometry optimization framework offers considerable design flexibility and scalability, making it especially suitable for high-performance acoustic sensing applications.

2.
Sensors (Basel) ; 24(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38474901

RESUMEN

An acoustic imaging method for detecting and locating gas leaks based on a virtual ultrasonic sensor array is proposed and experimentally demonstrated. A scanning sensor array of only two sensors is used to collect the acoustic signals generated by the leakage hole. The matrix of the leakage signal is processed by the cross-power spectrum method to achieve time consistency, afterward, the location of the leakage source can be calculated by the virtual beamforming method. The influence of the number of sensors and the distance between adjacent sensors on the effect of the proposed method are compared and discussed. To verify the effectiveness and operability of the detection and localization method, several experiments were carried out. Furthermore, a series of experiments were conducted to assess the accuracy and stability of this method. The experimental results demonstrate that the proposed method based on a virtual sensor array can achieve highly accurate localization of gas leaks and performs well regarding stability.

3.
Opt Express ; 30(6): 8474-8481, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299299

RESUMEN

Plasmon induced transparency (PIT), known as the coupling of plasmon modes in metamaterials, has attracted intensive research interests in photonic applications. In this work, a PIT-like transparency is realized via the strong coupling of plasmonic dipole and epsilon-near-zero (ENZ) mode. Two types of metasurfaces, namely the gold nanoantenna and dolmen-like metasurface, are designed with an integrated ENZ material aluminum doped zinc oxide (AZO) film. Simulations with the finite element method (FEM) demonstrate that single and double transparent windows are achieved respectively. The adjustments of the peak position and transmittance of transparent windows via the structure parameters and the AZO film thickness are further investigated. This work provides an alternative coupling scheme of realizing PIT-like transparency with simple metasurface design, and offers great potential for future metamaterial applications.

4.
Sci Rep ; 9(1): 19294, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31827234

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Appl Opt ; 57(14): 3802-3807, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29791346

RESUMEN

Axial line-focused spiral zone plates were developed for operation at optical wavelengths. The design, fabrication, and diffraction properties of the proposed element are presented. Numerical results showed that hollow beams could be generated, and that the element can be employed for a multi-wavelength operation. The hollow beam within the focal depth was demonstrated experimentally, using a charge-coupled device camera and sliding guide. The results were consistent with those obtained by the simulations. The proposed optical device exhibits significant potential for various applications including optical manipulation and lithography.

6.
Sci Rep ; 8(1): 740, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335467

RESUMEN

We theoretically investigate the optical properties of a nanostructure consisting of the two identical and symmetrically arranged crisscrosses. A plasmonic Fano resonance is induced by a strong interplay between bright mode and dark modes, where the bright mode is due to electric dipole resonance while dark modes originate from the magnetic dipole induced by LC resonances. In this article, we find that the electric field "hotspots" corresponding to three different wavelengths can be positioned at the same spatial position, and its spectral tunability is achieved by changing geometric parameters. The crisscrosses system can be designed as a plasmonic substrate for enhancing Coherent Anti-Stokes Raman Scattering (CARS) signal. This discovery provides a new method to achieve single molecule detection. At the same time, it also has many important applications for multi-photon imaging and other nonlinear optical processes, such as four-wave mixing and stimulated Raman scattering.

7.
Opt Express ; 25(1): 497-507, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28085843

RESUMEN

The development of new substrates for surface-enhanced spectroscopy is primarily motivated by the ability to design such substrates to provide the maximum signal enhancement. In this paper, we theoretically design and investigate a crisscross dimer array as a plasmonic substrate for enhancing coherent anti-Stokes Raman scattering (CARS). The plasmonic film-crisscross dimer array system can excite multiple resonances at optical frequencies. By properly designing structure parameters, three plasmon resonances with large field enhancements and same spatial hot spot regions can spectrally match with the pump, Stokes and anti-Stokes beams, respectively. The CARS signals are strongly enhanced by multi-resonance plasmon field enhancements. The estimated CARS factor can reach as high order as ~1016 over conventional CARS without the plasmonic substrate.

8.
Sci Rep ; 5: 12536, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26205611

RESUMEN

Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research.

9.
Opt Express ; 23(11): 14211-8, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072788

RESUMEN

We report intense (~10 mW), ultra-broadband (~150 THz wide), terahertz-to-infrared, Gaussian-wavefront emission from nanopore-structured metallic thin films under femtosecond laser pulse irradiation. The proposed underlying mechanism is thermal radiation. The nanostructures of the metal film are produced by random holes in the substrate. Under pulse-train femtosecond laser irradiation, we found dramatically enhanced optical absorption, with an absorptivity that was equal to as much as 95% of the metallic surface nanostructure, due to both an antireflection mechanism and dissipation of excited surface plasmon polaritons into the metal surface.

10.
Opt Express ; 20(1): 75-80, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22274330

RESUMEN

We present a theoretical and experimental investigation of the THz pulse phase measured by a broadband heterodyne detection method via field-induced second-harmonic generation in ambient air. The dependence of the detected THz phase spectra on the positions of the wire shaped electrodes scanning along the detection plasma is discussed. An additional phase shift around the beam focus is observed. Theoretical deductions reveal that it is caused by the Gouy shift of the optical probe beam and THz beam during the heterodyne detection process.


Asunto(s)
Modelos Teóricos , Fotometría/métodos , Radiación Terahertz , Simulación por Computador , Luz , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...