RESUMEN
BACKGROUND: The incidence of post-stroke depression (PSD) may be higher in patients with cancer-associated ischemic stroke (CAIS). The pathogenesis of PSD is mainly related to the emotional injury of stroke and the inability of neurons to effectively repair. This study aims to explore the clinical significance of serum neuron-specific enolase (NSE), brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) expression levels in CAIS patients. METHODS: Clinical data of 106 patients with CAIS admitted to Jinhua Guangfu Oncology Hospital from January 2012 to December 2022 were retrospectively analyzed. Serum levels of NSE, BDNF and CNTF were measured in all patients after admission. Depression screening was performed by Hamilton Depression Scale-17 (HAMD-17) three months after intravenous thrombolysis. Patients with HAMD-17 score >7 were included in the PSD group (n = 44), and patients with HAMD-17 score ≤7 were included in the non-PSD group (n = 62). The general data and serum levels of NSE, BDNF and CNTF were compared between the two groups. According to HAMD-17 scores, patients in PSD group were further divided into mild depression group (8-16 points), moderate depression group (17-23 points) and severe depression group (≥24 points), and the serum levels of NSE, BDNF and CNTF were compared among the three groups. Pearson's correlation test was used to analyze the correlation between HAMD-17 scores and serum NSE, BDNF and CNTF levels in PSD patients. Logistic regression model was used to determine the influencing factors of PSD in CAIS patients. Receiver operating characteristic (ROC) curve was plotted to analyze the predictive efficacy of serum NSE, BDNF, CNTF and their combination on PSD. RESULTS: Among 106 CAIS patients, the incidence of PSD was 41.51% (44 cases), including 19 patients with mild PSD (43.18%), 14 patients with moderate PSD (31.82%), and 11 patients with severe PSD (25.00%). There were statistically significant differences in negative life events and complications after thrombolytic therapy between PSD and non-PSD patients (p < 0.05). The serum NSE level in PSD group was significantly higher than that in non-PSD group, and the serum BDNF and CNTF levels were notably lower than those in non-PSD group (all p < 0.001). The serum levels of NSE, BDNF and CNTF in patients with different severity of PSD were statistically significant (all p < 0.001). HAMD-17 scores in PSD patients were positively correlated with serum NSE levels (r = 0.676, p < 0.001) and negatively correlated with serum BDNF and CNTF levels (r = -0.661, p < 0.001; r = -0.401, p = 0.007, respectively). By binary logistic regression analysis, the levels of serum NSE, BDNF and CNTF were independent influencing factors for PSD in CAIS patients, among which NSE was a risk factor (odds ratio (OR) >1, p < 0.05), BDNF and CNTF were protective factors (OR <1, p < 0.05). CONCLUSION: This study reveals for the first time that the levels of serum NSE, BDNF and CNTF are closely related to the occurrence and development of PSD in CAIS patients. In clinical CAIS patients with abnormal changes in the above indicators, in addition to anti-tumor treatment and improvement of neurological deficit symptoms, attention should also be paid to the symptoms of psychological disorders.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Factor Neurotrófico Ciliar , Depresión , Accidente Cerebrovascular Isquémico , Fosfopiruvato Hidratasa , Humanos , Factor Neurotrófico Derivado del Encéfalo/sangre , Masculino , Femenino , Fosfopiruvato Hidratasa/sangre , Persona de Mediana Edad , Estudios Retrospectivos , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/complicaciones , Depresión/sangre , Depresión/etiología , Factor Neurotrófico Ciliar/sangre , Anciano , Neoplasias/complicaciones , Neoplasias/sangre , Relevancia ClínicaRESUMEN
Phyllodes tumors (PTs) has an increased risk of local relapse and distant metastases. Molecular features correlating to histologic grade and aggressive behavior of PTs are poorly characterized. Here, whole exome sequencing (WES) was performed to explore genetic mutations in 61 samples of fibroepithelial breast tumors, including 16 fibroadenomas (FAs), 18 benign PTs, 19 borderline PTs, and 8 malignant PTs. Our work clearly shows that FA, benign PT, borderline PT, and malignant PT are independent entities at the genomic level. They may exist as hidden sub-clones carrying specific genetic alterations. Malignant PT-specific mutations present a multi-gene co-mutational pattern suggesting a synergistic effect of co-mutated genes in processes associated with malignant behavior. Moreover, we made a combined genomic and transcriptomic analysis, which presented a mutated gene-based interaction with expression profiles. We found that EGFR mutations (c.710C > T, c.758A > G, c.1295A > G, and c.2156G > C) serve as a hub of interaction network in borderline PTs, which suggests EGFR tyrosine kinase inhibitors (EGFRi) might be effective for borderline PTs. We found TP53 mutations (c.730G > T, c.844C > T, and c.1019delA) serves as a hub event of molecular changes of malignant PTs. Thus, our study based on the omics platforms of genome and transcriptome provides a better understanding of relapse process and the potential targeted therapy in PTs, which is pivotal in improving molecular-guided patient selection and designing clinically relevant combination strategies.
RESUMEN
OBJECTIVES: This study looked at the role of anti-carbamylated protein (anti-CarP) antibodies in contributing to lung fibrosis in CTD-associated interstitial lung disease (ILD) in an autoantigen-dependent manner. METHODS: ELISA was used to test serum samples, including 89 from the CTD-ILD group and 170 from the non-CTD-ILD group, for anti-CarP levels. Male C57BL/6 mice were used for the pulmonary fibrosis model and anti-CarP treatment in vivo (n = 5) and patient serum-derived or commercialized anti-CarP was used for cell treatment. We identified the carbamylated membrane protein via immunofluorescence (IF) and co-immunoprecipitation followed by mass spectrometry (MS) analysis. Quantitative RT-PCR, IF and western blot were performed to explore the antigen-dependent role of anti-CarP. A native electrophoretic mobility shift assay and MS analysis were used to verify direct interaction and carbamylation sites. RESULTS: A significantly higher serum anti-CarP level was observed in CTD with ILD than without ILD. In vivo, intrapulmonary delivery of anti-CarP induces epithelial-mesenchymal transition (EMT) and microfibrotic foci. Carbamylation was enriched in type II alveolar epithelial cells (AEC II). A novel carbamylated membrane receptor, specifically recognized by anti-CarP, was identified as toll-like receptor 5 (TLR5). We found anti-CarP induces the nuclear translocation of NF-κB and downstream events, including EMT and expression of inflammatory cytokines in AEC II, which were reversed by TLR5 blocking or TLR5 knockdown. Moreover, up to 12 lysine carbamylation sites were found in TLR5 ectodomain, allowing the interaction of anti-CarP with carbamylated TLR5. CONCLUSIONS: Overall, we found anti-CarP drives aberrant AEC II activation by interacting with carbamylated TLR5 to promote ILD progression.
Asunto(s)
Autoanticuerpos , Ratones Endogámicos C57BL , Fibrosis Pulmonar , Receptor Toll-Like 5 , Animales , Ratones , Masculino , Humanos , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inmunología , Autoanticuerpos/inmunología , Receptor Toll-Like 5/metabolismo , Carbamilación de Proteína , Células Epiteliales Alveolares/metabolismo , Fenotipo , Transición Epitelial-Mesenquimal , Modelos Animales de Enfermedad , Autoantígenos/inmunología , Autoantígenos/metabolismoRESUMEN
Implementation of clinical practice guidelines (CPG) is a complex and challenging task. Computer technology, including artificial intelligence (AI), has been explored to promote the CPG implementation. This study has reviewed the main domains where computer technology and AI has been applied to CPG implementation. PubMed, Embase, Web of science, the Cochrane Library, China National Knowledge Infrastructure database, WanFang DATA, VIP database, and China Biology Medicine disc database were searched from inception to December 2021. Studies involving the utilization of computer technology and AI to promote the implementation of CPGs were eligible for review. A total of 10429 published articles were identified, 117 met the inclusion criteria. 21 (17.9%) focused on the utilization of AI techniques to classify or extract the relative content of CPGs, such as recommendation sentence, condition-action sentences. 47 (40.2%) focused on the utilization of computer technology to represent guideline knowledge to make it understandable by computer. 15 (12.8%) focused on the utilization of AI techniques to verify the relative content of CPGs, such as conciliation of multiple single-disease guidelines for comorbid patients. 34 (29.1%) focused on the utilization of AI techniques to integrate guideline knowledge into different resources, such as clinical decision support systems. We conclude that the application of computer technology and AI to CPG implementation mainly concentrated on the guideline content classification and extraction, guideline knowledge representation, guideline knowledge verification, and guideline knowledge integration. The AI methods used for guideline content classification and extraction were pattern-based algorithm and machine learning. In guideline knowledge representation, guideline knowledge verification, and guideline knowledge integration, computer techniques of knowledge representation were the most used.
Asunto(s)
Inteligencia Artificial , Sistemas de Apoyo a Decisiones Clínicas , Humanos , Algoritmos , Computadores , TecnologíaRESUMEN
By performing numerical simulations for the handwritten digit recognition task, we demonstrate that a magnetic skyrmion lattice confined in a thin-plate magnet possesses high capability of reservoir computing. We obtain a high recognition rate of more than 88%, higher by about 10% than a baseline taken as the echo state network model. We find that this excellent performance arises from enhanced nonlinearity in the transformation which maps the input data onto an information space with higher dimensions, carried by interferences of spin waves in the skyrmion lattice. Because the skyrmions require only application of static magnetic field instead of nanofabrication for their creation in contrast to other spintronics reservoirs, our result consolidates the high potential of skyrmions for application to reservoir computing devices.
RESUMEN
Intervertebral disc (IVD) degeneration and its inflammatory microenvironment can result in discogenic pain, which has been shown to stem from the nucleus pulposus (NP). Increasing evidence suggests that mitochondrial related genes are strictly connected to cell functionality and, importantly, it can regulate cell immune activity in response to damaged associated signals. Therefore, identification of mitochondria related genes might offer new diagnostic markers and therapeutic targets for IVD degeneration. In this study, we identified key genes involved in NP tissue immune cell infiltration during IVD degeneration by bioinformatic analysis. The key modules were screened by weighted gene co-expression network analysis (WCGNA). Characteristic genes were identified by random forest analysis. Then gene set enrichment analysis (GSEA) was used to explore the signaling pathways associated with the signature genes. Subsequently, CIBERSORT was used to classify the infiltration of immune cells. Function of the hub gene was confirmed by PCR, Western blotting and ELISA. Finally, we identified MFN2 as a crucial molecule in the process of NP cell pyroptosis and NLRP3 inflammasome activation. We speculate that the increased MFN2 expression in NP tissue along with the infiltration of CD8+ T cells, NK cell and neutrophils play important roles in the pathogenesis of IVD degeneration.
RESUMEN
Drug resistance occurs frequently in triple-negative breast cancer (TNBC) and leads to early relapse and short survival. Targeting the DNA damage response (DDR) has become an effective strategy for overcoming TNBC chemoresistance. CENPF (centromere protein) is a key regulator of cell cycle progression, but its role in TNBC chemotherapy resistance remains unclear. Here, we found that CENPF, which is highly expressed in TNBC, is associated with a poor prognosis in patients receiving chemotherapy. In addition, in vitro CENPF knockdown significantly increased adriamycin (ADR)-induced cytotoxicity in MDA-MB-231 cells and ADR-resistant cells (MDA-MB-231/ADR). Then, we demonstrated that CENPF targets Chk1-mediated G2/M phase arrest and binds to Rb to compete with E2F1 in TNBC. Considering the crucial role of E2F1 in the DNA damage response and DNA repair, a novel mechanism by which CENPF regulates the Rb-E2F1 axis will provide new horizons to overcome chemotherapy resistance in TNBC.
Asunto(s)
Proteínas Cromosómicas no Histona , Resistencia a Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Centrómero , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Factor de Transcripción E2F1/genética , Mitosis , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Proteínas Cromosómicas no Histona/genéticaRESUMEN
Lethal intestinal tissue toxicity is a common side effect and a dose-limiting factor in chemoradiotherapy. Chemoradiotherapy can trigger DNA damage and induce P53-dependent apoptosis in LGR5+ intestinal stem cells (ISCs). Gamma-aminobutyric acid (GABA) and its A receptors (GABAAR) are present in the gastrointestinal tract. However, the functioning of the GABAergic system in ISCs is poorly defined. We found that GABAAR α1 (GABRA1) levels increased in the murine intestine after chemoradiotherapy. GABRA1 depletion in LGR5+ ISCs protected the intestine from chemoradiotherapy-induced P53-dependent apoptosis and prolonged animal survival. The administration of bicuculline, a GABAAR antagonist, prevented chemoradiotherapy-induced ISC loss and intestinal damage without reducing the chemoradiosensitivity of tumors. Mechanistically, it was associated with the reduction of reactive oxygen species-induced DNA damage via the L-type voltage-dependent Ca2+ channels. Notably, flumazenil, a GABAAR antagonist approved by the U.S. Food and Drug Administration, rescued human colonic organoids from chemoradiotherapy-induced toxicity. Therefore, flumazenil may be a promising drug for reducing the gastrointestinal side effects of chemoradiotherapy.
Asunto(s)
Receptores de GABA-A , Proteína p53 Supresora de Tumor , Animales , Bicuculina/farmacología , Calcio , Quimioradioterapia , Flumazenil/farmacología , Humanos , Intestinos , Ratones , Especies Reactivas de Oxígeno , Células Madre/fisiología , Proteína p53 Supresora de Tumor/genética , Estados Unidos , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
OBJECTIVES: To investigate lymphoid enhancer factor 1 (LEF-1) protein expression in medulloblastomas (MBs) and its correlation with molecular grouping of MBs. METHODS: Expressions of LEF-1 and ß-catenin were detected by immunohistochemistry, and molecular grouping was performed based on the NanoString and sequencing techniques for 30 MBs. RESULTS: By genetic defining, 3 MBs were WNT-activated, 11 were SHH-activated, 3 were in Group 3 and 13 in Group 4 respectively. Nuclear LEF-1 staining was found in 8 MBs using immunohistochemical method. Three out of 8 showed diffuse and strong nuclear LEF-1 staining which were proved to be WNT-activated genetically, while the other 5 MBs with focal staining were SHH-activated genetically. The expression of LEF-1 protein was significantly correlated with genetically defined WNT-activated MBs (P < 0.0001). We also found focal nuclear ß-catenin expression ( less than 1% of tumor cells) in 5 MBs. LEF-1 positivity was significantly correlated nuclear ß-catenin expression (p < 0.001). CONCLUSIONS: Immunohistochemical staining of LEF-1 can be used as a supplement for ß-catenin to diagnosis WNT-activated Medulloblastomas, when ß-catenin is difficult to recognize for its cytoplasm/membrane staining background. Diffuse nuclear staining of LEF-1 indicates WNT-activated MB.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Biomarcadores , Neoplasias Cerebelosas/diagnóstico , Humanos , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Coloración y Etiquetado , Factores de Transcripción TCF , beta Catenina/metabolismoRESUMEN
EWSR1-rearranged tumors encompass a rare and heterogeneous group of entities with features of the central nervous system (CNS) mesenchymal and primary glial/neuronal tumors. EWSR1-PLAGL1 gene fusion is a particularly rare form of rearrangement. We presented a recurrent intracranial EWSR1-PLAGL1 rearranged tumor and reviewed the relevant literature. In this case, histopathology and immunohistochemistry (IHC) were evaluated for both the primary and relapsed tumors. Fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) were performed for the relapsed tumor. We compared the morphology, IHC results and molecular features with the previously reported EWSR1-PLAGL1 rearranged CNS tumors. Our case exhibited a unique feature with a variable biphasic pattern of epithelioid differentiation, which differed from the two reported groups. The primary and relapsed tumors both expressed cytokeratin of the focal area with epithelioid differentiation. The recurrent tumor showed an increased proliferation index (average Ki-67 index of 15%) compared with the primary tumor (average Ki-67 index of 5%). NGS showed that TERT promoter mutation was the only molecular change besides EWSR1-PLAGL1 fusion. Our study provides further insight into intracranial tumors with EWSR1-PLAGL1 fusion, representing a distinct CNS tumor with no-reported histological and immunohistochemical features. Future studies, particularly for the biphasic differentiation and the role of TERT promoter mutation were needed to clarify this unusual chromosomal rearrangement in the CNS tumor.
RESUMEN
Hippo signaling restricts tissue growth by inhibiting the transcriptional effector YAP. Here we uncover a role of Hippo signaling and a tumor suppressor function of YAP in estrogen receptor positive (ER+) breast cancer. We find that inhibition of Hippo/MST1/2 or activation of YAP blocks the ERα transcriptional program and ER+ breast cancer growth. Mechanistically, the Hippo pathway transcription factor TEAD physically interacts with ERα to increase its promoter/enhancer occupancy whereas YAP inhibits ERα/TEAD interaction, decreases ERα occupancy on its target promoters/enhancers, and promotes ERα degradation by the proteasome. Furthermore, YAP inhibits hormone-independent transcription of ERα gene (ESR1). Consistently, high levels of YAP correlate with good prognosis of ER+ breast cancer patients. Finally, we find that pharmacological inhibition of Hippo/MST1/2 impeded tumor growth driven by hormone therapy resistant ERα mutants, suggesting that targeting the Hippo-YAP-TEAD signaling axis could be a potential therapeutical strategy to overcome endocrine therapy resistance conferred by ERα mutants.
Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Hormonas , Humanos , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Leonurus japonicus Houtt. (Motherwort) is the fresh or dried aerial part of Leonurus japonicus Houtt. (Labiaceae), which is widely used in clinical practice and daily life, used to treat gynecological diseases. However, the differences between different parts, single index component in Pharmacopoeias and the less stability of active ingredients affect its clinical efficacy. This study aimed to find the multi-active compounds between different parts of Motherwort to ensure its clinical efficacy, which related to stability and had pharmacokinetic behavior. Firstly, HPLC-Q-TOF-MS/MS was used to analyze the components in vitro and in vivo, as well as multivariate statistical analysis and network pharmacology analysis was conducted to find the significant different components related to activity. Secondly, the content determination methods were established to study the stability of effective components during storage in order to establish the content limit for quality control of Motherwort. Thirdly, UFLC-MS/MS was used to analyze the pharmacokinetic behavior of active components in Motherwort. The results showed that a total of 131 chemical constituents were identified in vitro and 21 prototype absorption compounds and 72 metabolites were found in vivo. Meantime, multivariate statistical analysis and network pharmacology analysis was combined to find that leonurine, stachydrine and trigonelline were activity-related substance, which could be used as active components related to pharmacodynamics in different parts. Then the stability variation trend and content limit of three alkaloids were found, which could be used for the quality control of Motherwort. Furthermore, the results showed that three alkaloids had pharmacokinetic behavior in vivo. 3 alkaloids were screened, which could be used as active components most closely related to pharmacodynamics among different parts. The stable stage, assay tolerance and pharmacokinetic characteristics were studied by the active substances, which could provide a basis for quality control and clinical medication of Motherwort.
Asunto(s)
Medicamentos Herbarios Chinos , Leonurus , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Leonurus/química , Control de Calidad , Espectrometría de Masas en TándemRESUMEN
Copper (II) ions have been shown to greatly improve the chemical stability and peroxidase-like activity of gold nanoclusters (AuNCs). Since the affinity between Cu2+ and pyrophosphate (PPi) is higher than that between Cu2+ and AuNCs, the catalytic activity of AuNCs-Cu2+ decreases with the introduction of PPi. Based on this principle, a new colorimetric detection method of PPi with high sensitivity and selectivity was developed by using AuNCs-Cu2+ as a probe. Under optimized conditions, the detection limit of PPi was 0.49 nM with a linear range of 0.51 to 30,000 nM. The sensitivity of the method was three orders of magnitude higher than that of a fluorescence method using AuNCs-Cu2+ as the probe. Finally, the AuNCs-Cu2+ system was successfully applied to directly determine the concentration of PPi in human urine samples.
Asunto(s)
Oro , Nanopartículas del Metal , Colorimetría , Cobre , Difosfatos , Colorantes Fluorescentes , Humanos , Límite de Detección , Peroxidasa , Peroxidasas , Espectrometría de FluorescenciaRESUMEN
Ichthyophthirius multifiliis is a major pathogen that causes a high mortality rate in trout farms. However, systemic responses to the pathogen and its interactions with multiple organs during the course of infection have not been well described. In this study, dual-organ transcriptomic responses in the liver and head kidney and hemato-serological indexes were profiled under I. multifiliis infection and recovery to investigate systemic immuno-physiological characteristics. Several strategies for massive transcriptomic interpretation, such as differentially expressed genes (DEGs), Poisson linear discriminant (PLDA), and weighted gene co-expression network analysis (WGCNA) models were used to investigate the featured genes/pathways while minimizing the disadvantages of individual methods. During the course of infection, 6,097 and 2,931 DEGs were identified in the head kidney and liver, respectively. Markers of protein processing in the endoplasmic reticulum, oxidative phosphorylation, and the proteasome were highly expressed. Likewise, simultaneous ferroptosis and cellular reconstruction was observed, which is strongly linked to multiple organ dysfunction. In contrast, pathways relevant to cellular replication were up-regulated in only the head kidney, while endocytosis- and phagosome-related pathways were notably expressed in the liver. Moreover, interestingly, most immune-relevant pathways (e.g., leukocyte trans-endothelial migration, Fc gamma R-mediated phagocytosis) were highly activated in the liver, but the same pathways in the head kidney were down-regulated. These conflicting results from different organs suggest that interpretation of co-expression among organs is crucial for profiling of systemic responses during infection. The dual-organ transcriptomics approaches presented in this study will greatly contribute to our understanding of multi-organ interactions under I. multifiliis infection from a broader perspective.
Asunto(s)
Infecciones por Cilióforos/genética , Enfermedades de los Peces/genética , Interacciones Huésped-Patógeno/genética , Hymenostomatida/patogenicidad , Aprendizaje Automático , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/parasitología , Transcriptoma , Animales , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/parasitología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Branquias/inmunología , Riñón Cefálico/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Hígado/inmunología , Oncorhynchus mykiss/inmunología , RNA-Seq/métodos , Transducción de Señal/genética , Transducción de Señal/inmunología , Virulencia/genética , Virulencia/inmunología , Factores de VirulenciaRESUMEN
Rheumatoid arthritis (RA) is associated with increased localized and generalized bone loss, but the complex genetic mechanism between them is still unknown. By leveraging large-scale genome-wide association studies summary statistics and individual-level datasets (i.e. UK Biobank), a series of genetic approaches were conducted. Linkage disequilibrium score regression reveals a shared genetic correlation between RA and estimated bone mineral density (eBMD) (rg = -0.059, P = 0.005). The PLACO analysis has identified 74 lead (8 novel) pleiotropic loci that could be mapped to 99 genes, the genetic functions of which reveal the possible mechanism underlying RA and osteoporosis. In European, genetic risk score (GRS) and comprehensive Mendelian randomization (MR) were utilized to evaluate the causal association between RA and osteoporosis in European and Asian. The increase in GRS of RA could lead to a decrease of eBMD (beta = -0.008, P = 3.77E-6) and a higher risk of facture [odds ratio (OR) = 1.012, P = 0.044]. MR analysis identified that genetically determined RA was causally associated with eBMD (beta = -0.021, P = 4.14E-05) and fracture risk (OR = 1.036, P = 0.004). Similar results were also observed in Asian that osteoporosis risk could be causally increased by RA (OR = 1.130, P = 1.04E-03) as well as antibodies against citrullinated proteins-positive RA (OR = 1.083, P = 0.015). Overall, our study reveals complex genetic mechanism between RA and osteoporosis and provides strong evidence for crucial role of RA in pathogenesis of osteoporosis.
Asunto(s)
Artritis Reumatoide/etiología , Susceptibilidad a Enfermedades , Osteoporosis/etiología , Algoritmos , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Biomarcadores , Densidad Ósea/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Desequilibrio de Ligamiento , Análisis de la Aleatorización Mendeliana , Modelos Genéticos , Osteoporosis/metabolismo , Osteoporosis/patología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Grupos Raciales/genéticaRESUMEN
[This corrects the article DOI: 10.7150/ijbs.41627.].
RESUMEN
Alveolar epithelial cells play an essential role in the initiation and progression of pulmonary fibrosis, and the occurrence of epithelial-mesenchymal transition (EMT) may be the early events of pulmonary fibrosis. Recent studies have shown chemokines are involved in the complex process of EMT, and CXC chemokine ligand 16 (CXCL16) is also associated with many fibrosis-related diseases. However, whether CXCL16 is dysregulated in alveolar epithelial cells and the role of CXCL16 in modulating EMT in pulmonary fibrosis has not been reported. In this study, we found that CXCL16 and its receptor C-X-C motif chemokine receptor 6 (CXCR6) were upregulated in bleomycin induced EMT in human alveolar type II-like epithelial A549 cells. Synergistic effect of CXCL16 and bleomycin in promoting EMT occurrence, extracellular matrix (ECM) excretion, as well as the pro-inflammatory and pro-fibrotic cytokines productions in A549 cells were observed, and those biological functions were impaired by CXCL16 siRNA. We further confirmed that CXCL16 regulated EMT in A549 cells via the TGF-ß1/Smad3 pathways. These results indicated that CXCL16 could promote pulmonary fibrosis by promoting the process of EMT via the TGF-ß1/Smad3 signaling pathway.
Asunto(s)
Bleomicina/toxicidad , Quimiocina CXCL16/biosíntesis , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Células A549 , Antibióticos Antineoplásicos/toxicidad , Relación Dosis-Respuesta a Droga , HumanosRESUMEN
Intervertebral disc degeneration (IDD) is the most common degenerative disease all over the word. Our previous study confirmed that the downregulated circ-GRB10 directly interacts with miR-328-5p, which modulate ERBB2 and leads to the degeneration of intervertebral disc; however, the underpinning mechanism of circ-GRB10 dysregulation remains unclear. We identified that FUS and demonstrated that circ-GBR10 biosynthesis in nucleus pulposus (NP) cells was promoted by FUS, whose expression was controlled by miR-141-3p. In addition, ERBB2 downregulation led to decreased Erk1/2 phosphorylation which enhanced miR-141-3p production in NP cells. In vivo data indicated that circ-GRB10 inhibited IDD in rat model. The present study revealed that miR-141-3p and FUS are key factors that regulate circ-GRB10 synthesis in NP cells. In addition, circ-GBR10 participates in the molecular circuitry that controls human IDD development. These findings provide a basis for further functional, diagnostic and therapeutic studies of circ-GRB10 in IDD.
Asunto(s)
Redes Reguladoras de Genes , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/patología , ARN Circular/metabolismo , Adulto , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Fosforilación , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Circular/genética , Proteína FUS de Unión a ARN/metabolismo , Ratas Sprague-Dawley , Receptor ErbB-2/metabolismoRESUMEN
Although over-nutrition from overfeeding-induced obesity is known to be highly associated with metabolic and immunological disorders in humans, little is known about overfeeding-induced obesity in fish farming. The purpose of this study was to investigate changes in immuno-physiological parameters, to better understand the potential risk of overfeeding-induced obesity in fish. Commercial feed was provided to fish in the overfed group until they refuse to eat, but fish in the control group was fed with the feed at 1% bodyweight per day. The hemato-serological, histological, and immunological changes were observed at weeks 2 and 8. Rainbow trout leukocytes were co-incubated with oxidized low-density lipoprotein (OxLDL), and the phagocytes engulfing the OxLDL and the presence of apoptotic cells were evaluated. The body weight, body mass index (BMI), and hepatosomatic index (HSI) index were significantly higher in the overfed group, and high lipid accumulation and fatty changes were also observed in their livers, indicating that the feeding regime used in this study led to overfeeding-induced obesity. Likewise, much higher numbers of and larger vacuoles were observed in overfed fish macrophages, showing unclear boundaries between the cytoplasm and extracellular space. In the overfed group, the expression of IL-10, HSP70, TLR2, and CD36 was significantly higher, and lymphocyte apoptosis was more evident, indicating that overfeeding-induced obese fish might have immunologic disorders. This was the first study to demonstrate that overfeeding-induced obesity could cause an immune-physiological imbalance in rainbow trout, making them more vulnerable to infectious diseases and various stressful conditions. This study will contribute to improvements in fish nutrition, feeding practices, fish nutrition, and disease prevention in the aquaculture industry.