Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Intervalo de año de publicación
1.
Chemosphere ; 341: 139919, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37611775

RESUMEN

Air pollution is a major concern for human health and the environment. Consequently, environmental standards have become stricter to improve air quality. Thanks to this, the ambient levels of O3 precursors such as VOCs and NOX have decreased. However, O3 levels in Europe, especially during winter, have increased, potentially impacting on atmospheric oxidation capacity and the associated chemistry of tropospheric oxidants. In this work, we focus on recent changes in the oxidation capacity of urban atmospheres. The study is conducted with the results of the CMAQ modelling system with a regional resolution with 12 × 12 km2 across the entire European continent for the winter (January) and summer (July) of 2007 and 2015. The 2015 meteorological data is used for both years to emphasise emission changes during the studied period. We scrutinise the changes in ambient concentration levels of the main tropospheric oxidants (O3 and HOX radicals) in five representative cities, Valencia, Madrid, Milan, Berlin, and The Hague. The enhanced O3 formation in winter seems to be due to the low VOC/NOX ratio, while the opposite trend in summer may be related to a relatively high ratio. Additionally, photooxidation experiments are carried out in the EUPHORE chambers to study the effect of changes in NOX concentration and NO/NO2 ratio on the variation of the given oxidants at constant VOCs concentrations. For the baseline experiments, two scenarios are selected based on the model results of 2015: two representative winter and summer days of low and high pollution in Berlin and Madrid, respectively. The role of VOC/NOX and NO/NO2 ratios on atmospheric reactivity is discussed. As a result, it is first suggested that further decreases in ambient NOX levels are required to reduce ambient O3 levels. Moreover, additional factors should be considered when designing local-specific emission abatement strategies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Ozono/análisis , Dióxido de Nitrógeno , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente/métodos , Atmósfera , Oxidantes , Europa (Continente) , China
2.
Cells ; 11(21)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359807

RESUMEN

Several reports have shown that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the potential to also be neurotropic. However, the mechanisms by which SARS-CoV-2 induces neurologic injury, including neurological and/or psychological symptoms, remain unclear. In this review, the available knowledge on the neurobiological mechanisms underlying COVID-19 was organized using the AOP framework. Four AOPs leading to neurological adverse outcomes (AO), anosmia, encephalitis, stroke, and seizure, were developed. Biological key events (KEs) identified to induce these AOs included binding to ACE2, blood-brain barrier (BBB) disruption, hypoxia, neuroinflammation, and oxidative stress. The modularity of AOPs allows the construction of AOP networks to visualize core pathways and recognize neuroinflammation and BBB disruption as shared mechanisms. Furthermore, the impact on the neurological AOPs of COVID-19 by modulating and multiscale factors such as age, psychological stress, nutrition, poverty, and food insecurity was discussed. Organizing the existing knowledge along an AOP framework can represent a valuable tool to understand disease mechanisms and identify data gaps and potentially contribute to treatment, and prevention. This AOP-aligned approach also facilitates synergy between experts from different backgrounds, while the fast-evolving and disruptive nature of COVID-19 emphasizes the need for interdisciplinarity and cross-community research.


Asunto(s)
Rutas de Resultados Adversos , COVID-19 , Accidente Cerebrovascular , Humanos , SARS-CoV-2 , Barrera Hematoencefálica
3.
Environ Int ; 170: 107610, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356553

RESUMEN

High-quality and comprehensive exposure-related data are critical for different decision contexts, including environmental and human health monitoring, and chemicals risk assessment and management. However, exposure-related data are currently scattered, frequently of unclear quality and structure, not readily accessible, and stored in various-partly overlapping-data repositories, leading to inefficient and ineffective data usage in Europe and globally. We propose strategic guidance for an integrated European exposure data production and management framework for use in science and policy, building on current and future data analysis and digitalization trends. We map the existing exposure data landscape to requirements for data analytics and repositories across European policies and regulations. We further identify needs and ways forward for improving data generation, sharing, and usage, and translate identified needs into an operational action plan for European and global advancement of exposure data for policies and regulations. Identified key areas of action are to develop consistent exposure data standards and terminology for data production and reporting, increase data transparency and availability, enhance data storage and related infrastructure, boost automation in data management, increase data integration, and advance tools for innovative data analysis. Improving and streamlining exposure data generation and uptake into science and policy is crucial for the European Chemicals Strategy for Sustainability and European Digital Strategy, in line with EU Data policies on data management and interoperability.


Asunto(s)
Ciencia de los Datos , Humanos , Europa (Continente)
4.
J Clin Med ; 11(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36233559

RESUMEN

The gut has been proposed as a potential alternative entry route for SARS-CoV-2. This was mainly based on the high levels of SARS-CoV-2 receptor expressed in the gastrointestinal (GI) tract, the observations of GI disorders (such as diarrhea) in some COVID-19 patients and the detection of SARS-CoV-2 RNA in feces. However, the underlying mechanisms remain poorly understood. It has been proposed that SARS-CoV-2 can productively infect enterocytes, damaging the intestinal barrier and contributing to inflammatory response, which might lead to GI manifestations, including diarrhea. Here, we report a methodological approach to assess the evidence supporting the sequence of events driving SARS-CoV-2 enteric infection up to gut adverse outcomes. Exploring evidence permits to highlight knowledge gaps and current inconsistencies in the literature and to guide further research. Based on the current insights on SARS-CoV-2 intestinal infection and transmission, we then discuss the potential implication on clinical practice, including on long COVID. A better understanding of the GI implication in COVID-19 is still needed to improve disease management and could help identify innovative therapies or preventive actions targeting the GI tract.

5.
Cells ; 11(19)2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36230989

RESUMEN

Loss of the sense of smell (anosmia) has been included as a COVID-19 symptom by the World Health Organization. The majority of patients recover the sense of smell within a few weeks postinfection (short-term anosmia), while others report persistent anosmia. Several studies have investigated the mechanisms leading to anosmia in COVID-19; however, the evidence is scattered, and the mechanisms remain poorly understood. Based on a comprehensive review of the literature, we aim here to evaluate the current knowledge and uncertainties regarding the mechanisms leading to short-term anosmia following SARS-CoV-2 infection. We applied an adverse outcome pathway (AOP) framework, well established in toxicology, to propose a sequence of measurable key events (KEs) leading to short-term anosmia in COVID-19. Those KEs are (1) SARS-CoV-2 Spike proteins binding to ACE-2 expressed by the sustentacular (SUS) cells in the olfactory epithelium (OE); (2) viral entry into SUS cells; (3) viral replication in the SUS cells; (4) SUS cell death; (5) damage to the olfactory sensory neurons and the olfactory epithelium (OE). This AOP-aligned approach allows for the identification of gaps where more research should be conducted and where therapeutic intervention could act. Finally, this AOP gives a frame to explain several disease features and can be linked to specific factors that lead to interindividual differences in response to SARS-CoV-2 infection.


Asunto(s)
Rutas de Resultados Adversos , COVID-19 , Trastornos del Olfato , Anosmia/etiología , COVID-19/complicaciones , Humanos , Trastornos del Olfato/diagnóstico , Trastornos del Olfato/etiología , SARS-CoV-2 , Olfato/fisiología , Glicoproteína de la Espiga del Coronavirus
6.
J Clin Med ; 11(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36143044

RESUMEN

Alteration in gut microbiota has been associated with COVID-19. However, the underlying mechanisms remain poorly understood. Here, we outlined three potential interconnected mechanistic pathways leading to gut dysbiosis as an adverse outcome following SARS-CoV-2 presence in the gastrointestinal tract. Evidence from the literature and current uncertainties are reported for each step of the different pathways. One pathway investigates evidence that intestinal infection by SARS-CoV-2 inducing intestinal inflammation alters the gut microbiota. Another pathway links the binding of viral S protein to angiotensin-converting enzyme 2 (ACE2) to the dysregulation of this receptor, essential in intestinal homeostasis-notably for amino acid metabolism-leading to gut dysbiosis. Additionally, SARS-CoV-2 could induce gut dysbiosis by infecting intestinal bacteria. Assessing current evidence within the Adverse Outcome Pathway framework justifies confidence in the proposed mechanisms to support disease management and permits the identification of inconsistencies and knowledge gaps to orient further research.

7.
J Clin Med ; 11(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956081

RESUMEN

Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.

8.
Reprod Toxicol ; 111: 34-48, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35525527

RESUMEN

The possible neurodevelopmental consequences of SARS-CoV-2 infection are presently unknown. In utero exposure to SARS-CoV-2 has been hypothesized to affect the developing brain, possibly disrupting neurodevelopment of children. Spike protein interactors, such as ACE2, have been found expressed in the fetal brain, and could play a role in potential SARS-CoV-2 fetal brain pathogenesis. Apart from the possible direct involvement of SARS-CoV-2 or its specific viral components in the occurrence of neurological and neurodevelopmental manifestations, we recently reported the presence of toxin-like peptides in plasma, urine and fecal samples specifically from COVID-19 patients. In this study, we investigated the possible neurotoxic effects elicited upon 72-hour exposure to human relevant levels of recombinant spike protein, toxin-like peptides found in COVID-19 patients, as well as a combination of both in 3D human iPSC-derived neural stem cells differentiated for either 2 weeks (short-term) or 8 weeks (long-term, 2 weeks in suspension + 6 weeks on MEA) towards neurons/glia. Whole transcriptome and qPCR analysis revealed that spike protein and toxin-like peptides at non-cytotoxic concentrations differentially perturb the expression of SPHK1, ELN, GASK1B, HEY1, UTS2, ACE2 and some neuronal-, glia- and NSC-related genes critical during brain development. Additionally, exposure to spike protein caused a decrease of spontaneous electrical activity after two days in long-term differentiated cultures. The perturbations of these neurodevelopmental endpoints are discussed in the context of recent knowledge about the key events described in Adverse Outcome Pathways relevant to COVID-19, gathered in the context of the CIAO project (https://www.ciao-covid.net/).


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Encéfalo/metabolismo , Niño , Humanos , Neuroglía , Neuronas/metabolismo , Péptidos , Glicoproteína de la Espiga del Coronavirus/metabolismo
9.
Phys Chem Chem Phys ; 22(24): 13698-13706, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32525165

RESUMEN

Criegee Intermediates (CI), formed in the ozonolysis of alkenes, play a central role in tropospheric chemistry as an important source of radicals, with stabilised CI (SCI) able to participate in bimolecular reactions, affecting climate through the formation of inorganic and organic aerosol. However, total SCI yields have only been determined for a few alkene systems, while speciated SCI yields from asymmetrical alkenes are almost entirely unknown. Here we report for the first time a systematic experimental exploration of the stabilisation of CH2OO and (CH3)2COO CI, formed from ten alkene-ozone systems with a range of different sizes and structures, under atmospherically relevant conditions in the EUPHORE chamber. Experiments in the presence of excess SO2 (an SCI scavenger) determined total SCI yields from each alkene-ozone system. Comparison of primary carbonyl yields in the presence/absence of SO2 determined the stabilisation fraction of a given CI. The results show that the stabilisation of a given CI increases as the size of the carbonyl co-product increases. This is interpreted in terms of the nascent population of CI formed following decomposition of the primary ozonide (POZ) having a lower mean energy distribution when formed with a larger carbonyl co-product, as more of the energy from the POZ is taken by the carbonyl. These findings have significant implications for atmospheric modelling of alkene ozonolysis. Higher stabilisation of small CI formed from large alkenes is expected to lead to lower radical yields from CI decomposition, and higher SCI concentrations, increasing the importance of SCI bimolecular reactions.

10.
Environ Sci Technol ; 54(13): 7798-7806, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32479720

RESUMEN

Formic acid (HCOOH), one of the most important and ubiquitous organic acids in the Earth's atmosphere, contributes substantially to atmospheric acidity and affects pH-dependent reactions in the aqueous phase. However, based on the current mechanistic understanding, even the most advanced chemical models significantly underestimate the HCOOH concentrations when compared to ambient observations at both ground-level and high altitude, thus underrating its atmospheric impact. Here we reveal new chemical pathways to HCOOH formation from reactions of both O3 and OH with ketene-enols, which are important and to date undiscovered intermediates produced in the photo-oxidation of aromatics and furans. We highlight that the estimated yields of HCOOH from ketene-enol oxidation are up to 60% in polluted urban areas and greater than 30% even in the continental background. Our theoretical calculations are further supported by a chamber experiment evaluation. Considering that aromatic compounds are highly reactive and contribute ca. 10% to global nonmethane hydrocarbon emissions and 20% in urban areas, the new oxidation pathways presented here should help to narrow the budget gap of HCOOH and other small organic acids and can be relevant in any environment with high aromatic emissions, including urban areas and biomass burning plumes.


Asunto(s)
Atmósfera , Compuestos Orgánicos , Biomasa , Oxidación-Reducción
11.
F1000Res ; 9: 1296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33564397

RESUMEN

The JRC COVID-19 In Vitro Diagnostic Devices and Test Methods Database, aimed to collect in a single place all publicly available information on performance of CE-marked in vitro diagnostic medical devices (IVDs) as well as in house laboratory-developed devices and related test methods for COVID-19, is here presented. The database, manually curated and regularly updated, has been developed as a follow-up to the Communication from the European Commission "Guidelines on in vitro diagnostic tests and their performance" of 15 April 2020 and is freely accessible at https://covid-19-diagnostics.jrc.ec.europa.eu/.


Asunto(s)
COVID-19/diagnóstico , Bases de Datos Factuales , Juego de Reactivos para Diagnóstico , Unión Europea , Humanos
12.
Environ Sci Technol ; 52(16): 9136-9144, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29996046

RESUMEN

The gas-phase atmospheric degradation of prosulfocarb (a widely used thiocarbamate herbicide in winter cereals) at different NOx concentrations was investigated at the large outdoor European PHOtoREactor (EUPHORE) in Valencia, Spain. Photolysis under sunlight conditions and reaction with ozone were shown as unimportant. The rate constant for the reaction of prosulfocarb with OH radicals was determined as k = (2.9 ± 0.5) × 10-11 cm3 molecule-1 s-1 at 288 ± 10 K and atmospheric pressure by a conventional relative rate method. Significant ozone and aerosol formation was observed following the reaction of prosulfocarb with OH radicals, and the main detected carbon-containing gas-phase products were benzaldehyde, S-benzyl formyl(propyl)carbamothioate, and S-benzyl propanoyl(propyl)carbamothioate.


Asunto(s)
Atmósfera , Herbicidas , Grano Comestible , Radical Hidroxilo , España , Tiocarbamatos
13.
Trends Plant Sci ; 23(6): 507-512, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29681504

RESUMEN

Indoor pollution poses a serious threat to human health. Plants represent a sustainable but underexploited solution to enhance indoor air quality. However, the current selection of plants suitable for indoors fails to consider the physiological processes and mechanisms involved in phytoremediation. Therefore, the capacity of plants to remove indoor air pollutants through stomatal uptake (absorption) and non-stomatal deposition (adsorption) remains largely unknown. Moreover, the effects of the indoor plant-associated microbiome still need to be fully analyzed. Here, we discuss how a combination of the enhanced phytoremediation capacity of plants together with cutting-edge air-cleaning and smart sensor technologies can improve indoor life while reducing energy consumption.


Asunto(s)
Contaminación del Aire Interior/prevención & control , Monitoreo del Ambiente/métodos , Restauración y Remediación Ambiental/métodos , Plantas/metabolismo , Contaminación del Aire Interior/análisis , Biodegradación Ambiental , Monitoreo del Ambiente/instrumentación , Restauración y Remediación Ambiental/instrumentación
14.
Anal Bioanal Chem ; 409(4): 989-997, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27796452

RESUMEN

We sometimes see manufactured bakery products on the market which are labelled as being gluten free. Why is the content of such gluten proteins of importance for the fabrication of bakery industry and for the products? The gluten proteins represent up to 80 % of wheat proteins, and they are conventionally subdivided into gliadins and glutenins. Gliadins belong to the proline and glutamine-rich prolamin family. Its role in human gluten intolerance, as a consequence of its harmful effects, is well documented in the scientific literature. The only known therapy so far is a gluten-free diet, and hence, it is important to develop robust and reliable analytical methods to quantitatively assess the presence of the identified peptides causing the so-called coeliac disease. This work describes the development of a new, fast and robust micro ion pair-LC-MS analytical method for the qualitative and quantitative determination of 30-mer toxic gliadin peptides in wheat flour. The use of RapiGest™ SF as a denaturation reagent prior to the enzymatic digestion showed to shorten the measuring time. During the optimisation of the enzymatic digestion step, the best 30-mer toxic peptide was identified from the maximum recovery after 3 h of digestion time. The lower limit of quantification was determined to be 0.25 ng/µL. The method has shown to be linear for the selected concentration range of 0.25-3.0 ng/µL. The uncertainty related to reproducibility of measurement procedure, excluding the extraction step, has shown to be 5.0 % (N = 12). Finally, this method was successfully applied to the quantification of 30-mer toxic peptides from commercial wheat flour with an overall uncertainty under reproducibility conditions of 6.4 % including the extraction of the gliadin fraction. The results were always expressed as the average of the values from all standard concentrations. Subsequently, the final concentration of the 30-mer toxic peptide in the flour was calculated and expressed in milligrams per gram unit. The determined, calculated concentration of the 30-mer toxic peptide in the flour was found to be 1.29 ± 0.37 µg/g in flour (N = 25, s y = 545,075, f = 25 - 2 (t = 2.069), P = 95 %, two-sided).


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Harina/análisis , Contaminación de Alimentos/análisis , Gliadina/análisis , Péptidos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Secuencia de Aminoácidos , Calibración , Gliadina/química , Límite de Detección , Estándares de Referencia
15.
Sci Total Environ ; 579: 1-9, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881242

RESUMEN

The gas phase atmospheric degradation of pirimiphos-methyl (a widely used organophosphate insecticide and acaricide in many European regions) has been investigated at the large outdoor European Photoreactor (EUPHORE) in Valencia, Spain. Its photolysis has been studied under sunlight conditions and its reaction rate constant with OH radicals was measured by the relative rate method. The reaction with ozone was also investigated. The tropospheric degradation of pirimiphos-methyl is controlled mainly by the OH radical reaction. The rate coefficient of the OH reaction with pirimiphos-methyl, k, was measured by a conventional relative rate technique, where aniline was taken as a reference. The resulting value of the OH reaction rate constant with pirimiphos-methyl was k=(1.14±0.2)×10-10cm3molecule-1s-1. The tropospheric lifetime of pirimiphos-methyl with respect to the reaction with OH radicals was estimated to be around 1.6h (283±10) K and atmospheric pressure. Significant aerosol formation was observed in the OH reaction with yields that ranged from 25 to 37%, and with particle diameters below 550nm. This therefore reveals a high human risk due to PM<1, without taking into account the chemical composition of the degradation products. SO2, glyoxal and other oxygenated and nitrogenated compounds were the main degradation products detected.

16.
Sci Total Environ ; 574: 724-734, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27664759

RESUMEN

A risk assessment strategy based on the quantitative target analysis and semi-quantitative retrospective screening determination of pesticides in PM10 has been developed. The proposed methodology was applied to 345 real samples from nine stations of a Mediterranean area in Spain, and the risk was assessed for adult, children and infants. Forty pesticides were detected with average concentrations ranging from 8 to 30,000pgm-3. Each station showed its specific pesticide profile, which is linked to the different types of crops around each station. For adults, children and infants the estimated chronic inhalation risk, expressed as Hazard Quotient (HQ), was <1 for all pesticides. The cumulative exposure for organophosphates, neonicotinoids, benzimidazoles, carbamates, micro-organism and triazoles pesticides (HI, Hazard Index) were <1 for the three groups of populations assessed. For infants, the cancer risk estimated for the detected pesticides classified as possible and potential carcinogens were lower than 1.0 E-06, except for carbendazim and hexythiazox.


Asunto(s)
Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/análisis , Plaguicidas/análisis , Adulto , Niño , Humanos , Lactante , Región Mediterránea , Estudios Retrospectivos , Medición de Riesgo , España
17.
Toxins (Basel) ; 8(9)2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27649244

RESUMEN

The aim of this work was to organize the first proficiency test (PT) dedicated to staphylococcal enterotoxin B (SEB) detection in milk and buffer solutions. This paper describes the organization of the PT trial according to EN ISO 17043 requirements. Characterization of the SEB stock solution was performed using SDS-PAGE and SE-specific ELISA, and amino acid analysis was used to assign its protein concentration. The solution was then used to prepare six PT materials (four milk and two buffer batches) at a ng/g toxin level, which included one blank and one SEA-containing milk as specificity control. Suitable material homogeneity and stability were assessed using screening and quantitative ELISAs. Among the methods used by the participants, ELISA-based methods demonstrated their efficiency for the detection of SEB in both simple and complex matrices. The results serve as a basis for further improving the detection capabilities in expert laboratories and can therefore be considered as a contribution to biopreparedness.


Asunto(s)
Tampones (Química) , Técnicas de Laboratorio Clínico/normas , Enterotoxinas/análisis , Ensayo de Inmunoadsorción Enzimática/normas , Microbiología de Alimentos/normas , Ensayos de Aptitud de Laboratorios , Leche/microbiología , Animales , Calibración , Unión Europea , Estándares de Referencia , Reproducibilidad de los Resultados
18.
Talanta ; 148: 472-7, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26653474

RESUMEN

A reliable method for determining malodorous reduced sulfur compounds (RSC) in atmospheric samples has been developed. The method uses an activated coconut solid-phase sorbent for active sampling, hexane as desorption solvent, and gas chromatography-mass spectrometry (GC-MS) technique for specific and sensitive separation-detection. The compounds analyzed were hydrogen sulfide, ethyl mercaptan, dimethyl sulfide, carbon disulfide, butyl mercaptan and dimethyl disulfide. Recovery efficiency varied between 75% and 97% and no detectable losses were observed during storage at -20°C. Satisfactory analytical parameters were reported, such as good linearity (r(2)>0.98), low detection limits (0.6-59 pg m(-3)), adequate repeatability (9%) and reproducibility (17%), and fast GC-MS analysis (<6.5 min). The accurate determination of RSCs, free of interferences from atmospheric components, such as ozone or water was demonstrated. The method has been applied to analyze the composition of environmental air close to three landfills processing urban and industrial solid wastes. The results indicated that hydrogen sulfide and ethyl mercaptan were the main molecules responsible of malodor phenomenon in the study areas.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Instalaciones de Eliminación de Residuos , Aire/análisis , Compuestos de Azufre
19.
Toxins (Basel) ; 7(12): 5035-54, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26703728

RESUMEN

The detection and identification of botulinum neurotoxins (BoNT) is complex due to the existence of seven serotypes, derived mosaic toxins and more than 40 subtypes. Expert laboratories currently use different technical approaches to detect, identify and quantify BoNT, but due to the lack of (certified) reference materials, analytical results can hardly be compared. In this study, the six BoNT/A1-F1 prototypes were successfully produced by recombinant techniques, facilitating handling, as well as improving purity, yield, reproducibility and biosafety. All six BoNTs were quantitatively nicked into active di-chain toxins linked by a disulfide bridge. The materials were thoroughly characterized with respect to purity, identity, protein concentration, catalytic and biological activities. For BoNT/A1, B1 and E1, serotypes pathogenic to humans, the catalytic activity and the precise protein concentration were determined by Endopep-mass spectrometry and validated amino acid analysis, respectively. In addition, BoNT/A1, B1, E1 and F1 were successfully detected by immunological assays, unambiguously identified by mass spectrometric-based methods, and their specific activities were assigned by the mouse LD50 bioassay. The potencies of all six BoNT/A1-F1 were quantified by the ex vivo mouse phrenic nerve hemidiaphragm assay, allowing a direct comparison. In conclusion, highly pure recombinant BoNT reference materials were produced, thoroughly characterized and employed as spiking material in a worldwide BoNT proficiency test organized by the EQuATox consortium.


Asunto(s)
Toxinas Botulínicas/análisis , Neurotoxinas/análisis , Animales , Toxinas Botulínicas/química , Toxinas Botulínicas/toxicidad , Femenino , Ensayos de Aptitud de Laboratorios/normas , Dosificación Letal Mediana , Ratones , Neurotoxinas/química , Neurotoxinas/toxicidad , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Proteínas Recombinantes/toxicidad , Estándares de Referencia , Proteínas SNARE/química
20.
Environ Sci Technol ; 49(22): 13168-78, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26473383

RESUMEN

Secondary organic aerosol (SOA) is well-known to have adverse effects on air quality and human health. However, the dynamic mechanisms occurring during SOA formation and evolution are poorly understood. The time-resolved SOA composition formed during the photo-oxidation of three aromatic compounds, methyl chavicol, toluene and 4-methyl catechol, were investigated at the European Photoreactor. SOA was collected using a particle into liquid sampler and analyzed offline using state-of-the-art mass spectrometry to produce temporal profiles of individual photo-oxidation products. In the photo-oxidation of methyl chavicol, 70 individual compounds were characterized and three distinctive temporal profile shapes were observed. The calculated mass fraction (Ci,aer/COA) of the individual SOA compounds showed either a linear trend (increasing/decreasing) or exponential decay with time. Substituted nitrophenols showed an exponential decay, with the nitro-group on the aromatic ring found to control the formation and loss of these species in the aerosol phase. Nitrophenols from both methyl chavicol and toluene photo-oxidation experiments showed a strong relationship with the NO2/NO (ppbv/ppbv) ratio and were observed during initial SOA growth. The location of the nitrophenol aromatic substitutions was found to be critically important, with the nitrophenol in the photo-oxidation of 4-methyl catechol not partitioning into the aerosol phase until irradiation had stopped; highlighting the importance of studying SOA formation and evolution at a molecular level.


Asunto(s)
Hidrocarburos Aromáticos/química , Luz , Material Particulado/análisis , Derivados de Alilbenceno , Anisoles/química , Atmósfera/química , Humedad , Nitrofenoles/análisis , Oxidantes/química , Oxidación-Reducción/efectos de la radiación , Temperatura , Factores de Tiempo , Tolueno/química , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA