Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 19(40): e2303005, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37269202

RESUMEN

A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu5 Zn8 , whose depth is controlled to retain the large pores for a hydraulic permeability ≈10-11  m2 . Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs-Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn-I2 flow battery at 60 mAh cm-2 and 60 mA cm-2 , performance that meets practical demands.

2.
Nanoscale ; 14(15): 5804-5813, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35352708

RESUMEN

The electrochemical performance of carbon nanofiber (CNF) electrodes in vanadium redox flow batteries (VRFBs) is enhanced by optimizing the morphological and physical properties of low-cost electrospun CNFs. The surface area, porosity and electrical conductivity of CNFs are tailored by modifying the precursor composition, especially the sacrificing agent, Fe(acac)3, in the polymer precursor and carbonization temperature. A highly porous structure with a large surface area is generated by the catalytic growth of graphitic carbon spheres surrounding the iron nanoparticles which are removed by an acid etching process. The graphitic carbon layers formed at a high carbonization temperature improve the electrical conductivity of CNFs. The large surface area of 349 m2 g-1 together with the abundant mesopore-dominant structure leads to high wettability and high activity for redox reactions of the electrode, giving rise to enhanced electrochemical performance in VRFBs. It delivers an energy efficiency (EE) of 91.4% at a current density of 20 mA cm-2 and 79.3% at 100 mA cm-2, and maintains an average EE of 72.5% after 500 charge/discharge cycles at 100 mA cm-2.

3.
Small ; 16(40): e2003815, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32875749

RESUMEN

Metallic sodium (Na) is an appealing anode material for high-energy Na batteries. However, Na metal suffers from low coulombic efficiencies and severe dendrite growth during plating/stripping cycles, causing short circuits. As an effective strategy to improve the deposition behavior of Na metal, a 3D carbon foam is developed that is sputter-coated with gold nanoparticles (Au/CF), forming a functional gradient through its thickness. The highly porous Au/CF host is proven to have gradually varying sodiophilicity, which in turn facilitates initially preferential Na deposition on the gold-rich, sodiophilic region in a "bottom-up growth" mode, leading to uniform plating over the entire Au/CF host. This finding contrasts with dendrite formation in the pristine CF host, as proven by in situ microscopy. The Na-predeposited Au/CF (Na@Au/CF) composite anode operates steadily for 1000 h at a low overpotential of ≈20 mV at 2 mA cm-2 in a symmetric cell. When the composite anode is coupled with a Na3 V2 (PO4 )2 F3 cathode, the full cell has a high capacity of 102.1 mAh g-1 after 500 cycles at 2 C. The sodiophilicity gradient design that is explored in this study offers new insight into developing porous Na metal hosts with highly stable plating/stripping performance for next-generation Na batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...