Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 177: 117052, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943988

RESUMEN

Adipose-derived mesenchymal stromal cells (AD-MSCs) are an essential issue in modern medicine. Extensive preclinical and clinical studies have shown that mesenchymal stromal/stem cells, including AD-MSCs, have specific properties (ability to differentiate into other cells, recruitment to the site of injury) of particular importance in the regenerative process. Ongoing research aims to elucidate factors supporting AD-MSC culture and differentiation in vitro. Angiopoietin-like proteins (ANGPTLs), known for their pleiotropic effects in lipid and glucose metabolism, may play a significant role in this context. Regeneration is a complex and dynamic process controlled by many factors. ANGPTL6 (Angiopoietin-related growth factor, AGF), among many activities modulated the biological activity of stem cells. This study examined the influence of synthesized AGF-derived peptides, designated as AGF9 and AGF27, on AD-MSCs. AGF9 and AGF27 enhanced the viability and migration of AD-MSCs and acted as a chemotactic factor for these cells. AGF9 stimulated chondrogenesis and lipid synthesis during AD-MSCs differentiation, influenced AD-MSCs cytokine secretion and modulated transcriptome for such basic cell activities as migration, transport of molecules, and apoptosis. The ability of AGF9 to modulate the biological activity of AD-MSCs warrants the consideration of this peptide a noteworthy therapeutic agent that deserves further investigation for applications in regenerative medicine.

2.
Biomedicines ; 12(3)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38540183

RESUMEN

Nucleopeptides (NPs) represent synthetic polymers created by attaching nucleobases to the side chains of amino acid residues within peptides. These compounds amalgamate the characteristics of peptides and nucleic acids, showcasing a unique ability to recognize RNA structures. In this study, we present the design and synthesis of Fmoc-protected nucleobase amino acids (1,4-TzlNBAs) and a new class of NPs, where canonical nucleobases are affixed to the side chain of L-homoalanine (Hal) through a 1,4-linked-1,2,3-triazole (HalTzl). Fmoc-protected 1,4-TzlNBAs suitable for HalTzl synthesis were obtained via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) conjugation of Fmoc-L-azidohomoalanine (Fmoc-Aha) and N1- or N9-propargylated nucleobases or their derivatives. Following this, two trinucleopeptides, HalTzlAAA and HalTzlAGA, and the hexanucleopeptide HalTzlTCCCAG, designed to complement bulge and outer loop structures of TAR (trans-activation response element) RNA HIV-1, were synthesized using the classical solid-phase peptide synthesis (SPPS) protocol. The binding between HalTzls and fluorescently labeled 5'-(FAM(6))-TAR UCU and UUU mutant was characterized using circular dichroism (CD) and fluorescence spectroscopy. CD results confirmed the binding of HalTzls to TAR RNA, which was evident by a decrease in ellipticity band intensity around 265 nm during complexation. CD thermal denaturation studies indicated a relatively modest effect of complexation on the stability of TAR RNA structure. The binding of HalTzls at an equimolar ratio only marginally increased the melting temperature (Tm) of the TAR RNA structure, with an increment of less than 2 °C in most cases. Fluorescence spectroscopy revealed that HalTzlAAA and HalTzlAGA, complementary to UUU or UCU bulges, respectively, exhibited disparate affinities for the TAR RNA structure (with Kd ≈ 30 and 256 µM, respectively). Hexamer HalTzlTCCCAG, binding to the outer loop of TARUCU, demonstrated a moderate affinity with Kd ≈ 38 µM. This study demonstrates that newly designed HalTzls effectively bind the TAR RNA structure, presenting a potential new class of RNA binders and may be a promising scaffold for the development of a new class of antiviral drugs.

3.
Microb Cell Fact ; 23(1): 81, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481305

RESUMEN

BACKGROUND: One of the leading current trends in technology is the miniaturization of devices to the microscale and nanoscale. The highly advanced approaches are based on biological systems, subjected to bioengineering using chemical, enzymatic and recombinant methods. Here we have utilised the biological affinity towards cellulose of the cellulose binding domain (CBD) fused with recombinant proteins. RESULTS: Here we focused on fusions with 'artificial', concatemeric proteins with preprogrammed functions, constructed using DNA FACE™ technology. Such CBD fusions can be efficiently attached to micro-/nanocellulose to form functional, hybrid bionanoparticles. Microcellulose (MCC) particles were generated by a novel approach to enzymatic hydrolysis using Aspergillus sp. cellulase. The interaction between the constructs components - MCC, CBD and fused concatemeric proteins - was evaluated. Obtaining of hybrid biomicroparticles of a natural cellulose biocarrier with proteins with therapeutic properties, fused with CBD, was confirmed. Further, biological tests on the hybrid bioMCC particles confirmed the lack of their cytotoxicity on 46BR.1 N fibroblasts and human adipose derived stem cells (ASCs). The XTT analysis showed a slight inhibition of the proliferation of 46BR.1 N fibroblasts and ACSs cells stimulated with the hybrid biomicroparticles. However, in both cases no changes in the morphology of the examined cells after incubation with the hybrid biomicroparticles' MCC were detected. CONCLUSIONS: Microcellulose display with recombinant proteins involves utilizing cellulose, a natural polymer found in plants, as a platform for presenting or displaying proteins. This approach harnesses the structural properties of cellulose to express or exhibit various recombinant proteins on its surface. It offers a novel method for protein expression, presentation, or immobilization, enabling various applications in biotechnology, biomedicine, and other fields. Microcellulose shows promise in biomedical fields for wound healing materials, drug delivery systems, tissue engineering scaffolds, and as a component in bio-sensors due to its biocompatibility and structural properties.


Asunto(s)
Biotecnología , Celulosa , Humanos , Proteínas Recombinantes de Fusión/metabolismo , Celulosa/metabolismo , Proteínas Recombinantes/genética , Hidrólisis
4.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338741

RESUMEN

Proprotein convertase subtilisin/kexin 9 (PCSK9) is a protein that plays a key role in the metabolism of low-density lipoprotein (LDL) cholesterol. The gain-of-function mutations of the PCSK9 gene lead to a reduced number of surface LDL receptors by binding to them, eventually leading to endosomal degradation. This, in turn, is the culprit of hypercholesterolemia, resulting in accelerated atherogenesis. The modern treatment for hypercholesterolemia encompasses the use of biological drugs against PCSK9, like monoclonal antibodies and gene expression modulators such as inclisiran-a short, interfering RNA (siRNA). Peptide nucleic acid (PNA) is a synthetic analog of nucleic acid that possesses a synthetic peptide skeleton instead of a phosphate-sugar one. This different structure determines the unique properties of PNA (e.g., neutral charge, enzymatic resistance, and an enormously high affinity with complementary DNA and RNA). Therefore, it might be possible to use PNA against PCSK9 in the treatment of hypercholesterolemia. We sought to explore the impact of three selected PNA oligomers on PCSK9 gene expression. Using a cell-free transcription/translation system, we showed that one of the tested PNA strands was able to reduce the PCSK9 gene expression down to 74%, 64%, and 68%, as measured by RT-real-time PCR, Western blot, and HPLC, respectively. This preliminary study shows the high applicability of a cell-free enzymatic environment as an efficient tool in the initial evaluation of biologically active PNA molecules in the field of hypercholesterolemia research. This cell-free approach allows for the omission of the hurdles associated with transmembrane PNA transportation at the early stage of PNA selection.


Asunto(s)
Hipercolesterolemia , Inhibidores de PCSK9 , Ácidos Nucleicos de Péptidos , Humanos , Expresión Génica , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/genética , Ácidos Nucleicos de Péptidos/farmacología , Proproteína Convertasa 9/efectos de los fármacos , Proproteína Convertasa 9/genética , Proproteína Convertasas/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Subtilisina/genética , Inhibidores de PCSK9/farmacología
5.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897844

RESUMEN

Mastoparan (MP) is an antimicrobial cationic tetradecapeptide with the primary structure INLKALAALAKKIL-NH2. This amphiphilic α-helical peptide was originally isolated from the venom of the wasp Paravespula lewisii. MP shows a variety of biological activities, such as inhibition of the growth of Gram-positive and Gram-negative bacteria, as well as hemolytic activity and activation of mast cell degranulation. Although MP appears to be toxic, studies have shown that its analogs have a potential therapeutic application as antimicrobial, antiviral and antitumor agents. In the present study we have designed and synthesized several new chimeric mastoparan analogs composed of MP and other biologically active peptides such as galanin, RNA III inhibiting peptide (RIP) or carrying benzimidazole derivatives attached to the ε-amino side group of Lys residue. Next, we compared their antimicrobial activity against three reference bacterial strains and conformational changes induced by membrane-mimic environments using circular dichroism (CD) spectroscopy. A comparative analysis of the relationship between the activity of peptides and the structure, as well as the calculated physicochemical parameters was also carried out. As a result of our structure-activity study, we have found two analogs of MP, MP-RIP and RIP-MP, with interesting properties. These two analogs exhibited a relatively high antibacterial activity against S. aureus compared to the other MP analogs, making them a potentially attractive target for further studies. Moreover, a comparative analysis of the relationship between peptide activity and structure, as well as the calculated physicochemical parameters, may provide information that may be useful in the design of new MP analogs.


Asunto(s)
Antiinfecciosos , Venenos de Avispas , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Péptidos y Proteínas de Señalización Intercelular , Pruebas de Sensibilidad Microbiana , Péptidos/química , Staphylococcus aureus , Relación Estructura-Actividad , Venenos de Avispas/química , Venenos de Avispas/farmacología
6.
Pharmaceuticals (Basel) ; 15(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35631437

RESUMEN

The ear pinna is a complex tissue consisting of the dermis, cartilage, muscles, vessels, and nerves. Ear pinna healing is a model of regeneration in mammals. In some mammals, including rabbits, punch wounds in the ear pinna close spontaneously; in common-use laboratory mice, they remain for life. Agents inducing ear pinna healing are potential regenerative drugs. We tested the effects of selected bioactive agents on 2 mm ear pinna wound closure in BALB/c mice. Our previous research demonstrated that a DNA methyltransferase inhibitor, zebularine, remarkably induced ear pinna regeneration. Although experiments with two other demethylating agents, RG108 and hydralazine, were unsuccessful, a histone deacetylase inhibitor, valproic acid, was another epigenetic agent found to increase ear hole closure. In addition, we identified a pro-regenerative activity of 4-ketoretinoic acid, a retinoic acid metabolite. Attempts to counteract the regenerative effects of the demethylating agent zebularine, with folates as methyl donors, failed. Surprisingly, a high dose of methionine, another methyl donor, promoted ear hole closure. Moreover, we showed that the regenerated areas of ear pinna were supplied with nerve fibre networks and blood vessels. The ear punch model proved helpful in testing the pro-regenerative activities of small-molecule compounds and observations of peripheral nerve regeneration.

7.
Cells ; 11(10)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35626677

RESUMEN

Arginine-rich cell-penetrating peptides (RRCPPs) exhibit intrinsic neuroprotective effects on neurons injured by acute ischemic stroke. Conformational properties, interaction, and the ability to penetrate the neural membrane are critical for the neuroprotective effects of RRCCPs. In this study, we applied circular dichroism (CD) spectroscopy and coarse-grained molecular dynamics (CG MD) simulations to investigate the interactions of two RRCPPs, Tat(49-57)-NH2 (arginine-rich motif of Tat HIV-1 protein) and PTD4 (a less basic Ala-scan analog of the Tat peptide), with an artificial neuronal membrane (ANM). CD spectra showed that in an aqueous environment, such as phosphate-buffered saline, the peptides mostly adopted a random coil (PTD4) or a polyproline type II helical (Tat(49-57)-NH2) conformation. On the other hand, in the hydrophobic environment of the ANM liposomes, the peptides showed moderate conformational changes, especially around 200 nm, as indicated by CD curves. The changes induced by the liposomes were slightly more significant in the PTD4 peptide. However, the nature of the conformational changes could not be clearly defined. CG MD simulations showed that the peptides are quickly attracted to the neuronal lipid bilayer and bind preferentially to monosialotetrahexosylganglioside (DPG1) molecules. However, the peptides did not penetrate the membrane even at increasing concentrations. This suggests that the energy barrier required to break the strong peptide-lipid electrostatic interactions was not exceeded in the simulated models. The obtained results show a correlation between the potential of mean force parameter and a peptide's cell membrane-penetrating ability and neuroprotective properties.


Asunto(s)
Péptidos de Penetración Celular , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Arginina , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Productos del Gen tat , Humanos , Liposomas , Membranas Artificiales , Neuronas , Fármacos Neuroprotectores/farmacología
8.
PLoS One ; 16(8): e0256180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34407137

RESUMEN

Contact tracing and quarantine are well established non-pharmaceutical epidemic control tools. The paper aims to clarify the impact of these measures in evolution of epidemic. The proposed deterministic model defines a simple rule on the reproduction number [Formula: see text] in terms of ratio of diagnosed cases and, quarantine and transmission parameters. The model is applied to the early stage of Covid19 crisis in Poland. We investigate 3 scenarios corresponding to different ratios of diagnosed cases. Our results show that, depending on the scenario, contact tracing prevented from 50% to over 90% of cases. The effects of quarantine are limited by fraction of undiagnosed cases. The key conclusion is that under realistic assumptions the epidemic can not be controlled without any social distancing measures.


Asunto(s)
Algoritmos , COVID-19/epidemiología , Trazado de Contacto/estadística & datos numéricos , Modelos Epidemiológicos , Cuarentena/estadística & datos numéricos , COVID-19/prevención & control , COVID-19/transmisión , Simulación por Computador , Trazado de Contacto/métodos , Humanos , Distanciamiento Físico , Polonia/epidemiología , Cuarentena/métodos , SARS-CoV-2/patogenicidad
9.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34200045

RESUMEN

Ischemic stroke is a disturbance in cerebral blood flow caused by brain tissue ischemia and hypoxia. We optimized a multifactorial in vitro model of acute ischemic stroke using rat primary neural cultures. This model was exploited to investigate the pro-viable activity of cell-penetrating peptides: arginine-rich Tat(49-57)-NH2 (R49KKRRQRRR57-amide) and its less basic analogue, PTD4 (Y47ARAAARQARA57-amide). Our model included glucose deprivation, oxidative stress, lactic acidosis, and excitotoxicity. Neurotoxicity of these peptides was excluded below a concentration of 50 µm, and PTD4-induced pro-survival was more pronounced. Circular dichroism spectroscopy and molecular dynamics (MD) calculations proved potential contribution of the peptide conformational properties to neuroprotection: in MD, Tat(49-57)-NH2 adopted a random coil and polyproline type II helical structure, whereas PTD4 adopted a helical structure. In an aqueous environment, the peptides mostly adopted a random coil conformation (PTD4) or a polyproline type II helical (Tat(49-57)-NH2) structure. In 30% TFE, PTD4 showed a tendency to adopt a helical structure. Overall, the pro-viable activity of PTD4 was not correlated with the arginine content but rather with the peptide's ability to adopt a helical structure in the membrane-mimicking environment, which enhances its cell membrane permeability. PTD4 may act as a leader sequence in novel drugs for the treatment of acute ischemic stroke.


Asunto(s)
Isquemia Encefálica/prevención & control , Péptidos de Penetración Celular/farmacología , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico/prevención & control , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Permeabilidad de la Membrana Celular , Femenino , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/patología , Ratas , Ratas Wistar
10.
Adv Wound Care (New Rochelle) ; 9(12): 657-675, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33124966

RESUMEN

Objective: This study evaluated the use of novel peptides derived from platelet-derived growth factor (PDGF-BB) as potential wound healing stimulants. One of the compounds (named PDGF2) was subjected for further research after cytotoxicity and proliferation assays on human skin cells. Further investigation included evaluation of: migration and chemotaxis of skin cells, immunological and allergic safety, the transcriptional analyses of adipose-derived stem cells (ASCs) and dermal fibroblasts stimulated with PDGF2, and the use of dorsal skin wound injury model to evaluate the effect of wound healing in mice. Approach: Colorimetric lactate dehydrogenase and tetrazolium assays were used to evaluate the cytotoxicity and the effect on proliferation. PDGF2 effect on migration and chemotaxis was also checked. Immunological safety and allergic potential were evaluated with a lymphocyte activation and basophil activation test. Transcriptional profiles of ASCs and primary fibroblasts were assessed after stimulation with PDGF2. Eight-week-old BALB/c female mice were used for dorsal skin wound injury model. Results: PDGF2 showed low cytotoxicity, pro-proliferative effects on human skin cells, high immunological safety, and accelerated wound healing in mouse model. Furthermore, transcriptomic analysis of ASCs and fibroblasts revealed the activation of processes involved in wound healing and indicated its safety. Innovation: A novel peptide derived from PDGF-BB was proved to be safe drug candidate in wound healing. We also present a multifaceted in vitro model for the initial screening of new compounds that may be potentially useful in wound healing stimulation. Conclusion: The results show that peptide derived from PDGF-BB is a promising drug candidate for wound treatment.


Asunto(s)
Tejido Adiposo/citología , Becaplermina/farmacología , Fibroblastos/efectos de los fármacos , Células Madre/citología , Cicatrización de Heridas/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Quimiotaxis/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Preparaciones Farmacéuticas , Proteínas Recombinantes , Piel/citología , Células Madre/metabolismo
11.
Molecules ; 25(12)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585846

RESUMEN

Regeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today's science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical specialties. In this study, we assessed the potential efficacy of a synthetic hexapeptide, RDKVYR, for the stimulation of tissue repair and wound healing. The hexapeptide is marketed under the name "Imunofan" (IM) as an immunostimulant. IM displayed stability in aqueous solutions, while in plasma it was rapidly bound by albumins. Structural analyses demonstrated the conformational flexibility of the peptide. Tests in human fibroblast and keratinocyte cell lines showed that IM exerted a statistically significant (p < 0.05) pro-proliferative activity (30-40% and 20-50% increase in proliferation of fibroblast and keratinocytes, respectively), revealed no cytotoxicity over a vast range of concentrations (p < 0.05), and had no allergic properties. IM was found to induce significant transcriptional responses, such as enhanced activity of genes involved in active DNA demethylation (p < 0.05) in fibroblasts and activation of genes involved in immune responses, migration, and chemotaxis in adipose-derived stem cells derived from surgery donors. Experiments in a model of ear pinna injury in mice indicated that IM moderately promoted tissue repair (8% in BALB/c and 36% in C57BL/6 in comparison to control).


Asunto(s)
Proliferación Celular/efectos de los fármacos , Oligopéptidos/farmacología , Piel/patología , Cicatrización de Heridas , Albúminas/metabolismo , Animales , Basófilos/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Quimiotaxis/efectos de los fármacos , Citocinas/metabolismo , Metilación de ADN/efectos de los fármacos , Oído/patología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Células HaCaT/citología , Células HaCaT/efectos de los fármacos , Humanos , Inyecciones Subcutáneas , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oligopéptidos/sangre , Oligopéptidos/química , Oligopéptidos/metabolismo , Estabilidad Proteica/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
12.
Data Brief ; 28: 105069, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31956674

RESUMEN

Applications of bioactive peptides and polypeptides are emerging in areas such as drug development and drug delivery systems. These compounds are bioactive, biocompatible and represent a wide range of chemical properties, enabling further adjustments of obtained biomaterials. However, delivering large quantities of peptide derivatives is still challenging. Several methods have been developed for the production of concatemers - multiple copies of the desired protein segments. We have presented an efficient method for the production of peptides of desired length, expressed from concatemeric Open Reading Frame. The method employs specific amplification-expression DNA vectors. The main methodological approaches are described by Skowron et al., 2020 [1]. As an illustration of the demonstrated method's utility, an epitope from the S protein of Hepatitis B virus (HBV) was amplified. Additionally, peptides, showing potentially pro-regenerative properties, derived from the angiopoietin-related growth factor (AGF) were designed and amplified. Here we present a dataset including: (i) detailed protocols for the purification of HBV and AGF - derived polyepitopic protein concatemers, (ii) sequences of the designed primers, vectors and recombinant constructs, (iii) data on cytotoxicity, immunogenicity and stability of AGF-derived polypeptides.

13.
Mater Sci Eng C Mater Biol Appl ; 108: 110426, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31923928

RESUMEN

A DNA fragment amplification/expression technology for the production of new generation biomaterials for scientific, industrial and biomedical applications is described. The technology enables the formation of artificial Open Reading Frames (ORFs) encoding concatemeric RNAs and proteins. It recruits the Type IIS SapI restriction endonuclease (REase) for an assembling of DNA fragments in an ordered head-to-tail-orientation. The technology employs a vector-enzymatic system, dedicated to the expression of newly formed, concatemeric ORFs from strong promoters. Four vector series were constructed to suit specialised needs. As a proof of concept, a model amplification of a 7-amino acid (aa) epitope from the S protein of HBV virus was performed, resulting in 500 copies of the epitope-coding DNA segment, consecutively linked and expressed in Escherichia coli (E. coli). Furthermore, a peptide with potential pro-regenerative properties (derived from an angiopoietin-related growth factor) was designed. Its aa sequence was back-translated, codon usage optimized and synthesized as a continuous ORF 10-mer. The 10-mer was cloned into the amplification vector, enabling the N-terminal fusion and multiplication of the encoded protein with MalE signal sequence. The obtained genes were expressed, and the proteins were purified. Conclusively, we show that the proteins are neither cytotoxic nor immunogenic and they have a very low allergic potential.


Asunto(s)
Materiales Biocompatibles , ADN Concatenado , Escherichia coli , Expresión Génica , Técnicas de Amplificación de Ácido Nucleico , Sistemas de Lectura Abierta , ADN Concatenado/genética , ADN Concatenado/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Virus de la Hepatitis B/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Virales de Fusión/biosíntesis , Proteínas Virales de Fusión/genética
14.
EBioMedicine ; 46: 317-329, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31303499

RESUMEN

BACKGROUND: Most studies on regenerative medicine focus on cell-based therapies and transplantations. Small-molecule therapeutics, though proved effective in different medical conditions, have not been extensively investigated in regenerative research. It is known that healing potential decreases with development and developmental changes are driven by epigenetic mechanisms, which suggests epigenetic repression of regenerative capacity. METHODS: We applied zebularine, a nucleoside inhibitor of DNA methyltransferases, to stimulate the regenerative response in a model of ear pinna injury in mice. FINDINGS: We observed the regeneration of complex tissue that was manifested as improved ear hole repair in mice that received intraperitoneal injections of zebularine. Six weeks after injury, the mean hole area decreased by 83.2 ±â€¯9.4% in zebularine-treated and by 43.6 ±â€¯15.4% in control mice (p < 10-30). Combined delivery of zebularine and retinoic acid potentiated and accelerated this effect, resulting in complete ear hole closure within three weeks after injury. We found a decrease in DNA methylation and transcriptional activation of neurodevelopmental and pluripotency genes in the regenerating tissues. INTERPRETATION: This study is the first to demonstrate an effective induction of complex tissue regeneration in adult mammals using zebularine. We showed that the synergistic action of an epigenetic drug (zebularine) and a transcriptional activator (retinoic acid) could be effectively utilized to induce the regenerative response, thus delineating a novel pharmacological strategy for regeneration. The strategy was effective in the model of ear pinna regeneration in mice, but zebularine acts on different cell types, therefore, a similar approach can be tested in other tissues and organs.


Asunto(s)
Citidina/análogos & derivados , Epigénesis Genética/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética , Animales , Biomarcadores , Proliferación Celular/efectos de los fármacos , Islas de CpG , Citidina/farmacología , Metilación de ADN/efectos de los fármacos , Pabellón Auricular/efectos de los fármacos , Pabellón Auricular/lesiones , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ratones , Medicina Regenerativa , Tretinoina/farmacología
15.
Bioconjug Chem ; 30(3): 760-774, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30653302

RESUMEN

Parkinson's disease (PD) is a common progressive neurodegenerative disorder for which the current treatment is not fully satisfactory. One of the major drawbacks of current PD therapy is poor penetration of drugs across the blood-brain barrier (BBB). In recent years, cell-penetrating peptides (CPPs) such as Tat, SynB, or TP10 have gained great interest due to their ability to penetrate cell membranes and to deliver different cargos to their targets including the central nervous system (CNS). However, there is no data with respect to the use of CPPs as drug carriers to the brain for the treatment of PD. In the presented research, the covalent TP10-dopamine conjugate was synthesized and its pharmacological properties were characterized in terms of its ability to penetrate the BBB and anti-parkinsonian activity. The results showed that dopamine (DA) in the form of a conjugate with TP10 evidently gained access to the brain tissue, exhibited low susceptibility to O-methylation reaction by catechol- O-methyltransferase (lower than that of DA), possessed a relatively high affinity to both dopamine D1 and D2 receptors (in the case of D1, a much higher than that of DA), and showed anti-parkinsonian activity (higher than that of l-DOPA) in the MPTP-induced preclinical animal model of PD. The presented results prove that the conjugation of TP10 with DA may be a good starting point for the development of a new strategy for the treatment of PD.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Péptidos de Penetración Celular/química , Dopamina/química , Enfermedad de Parkinson/tratamiento farmacológico , Proteínas Recombinantes de Fusión/química , Animales , Encéfalo/metabolismo , Péptidos de Penetración Celular/metabolismo , Dopamina/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Enfermedad de Parkinson/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
16.
Electrophoresis ; 40(2): 336-342, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30259532

RESUMEN

Systemin (Sys) is an 18-aa plant peptide hormone involved in the regulation of plant's defensive response. Sys is considered as a fast-spreading systemic wound signal. We developed a simple and rapid CE method to monitor the spreading of Sys peptides through tomato plant. A 1,2,3-triazole-linked AZT-systemin conjugate was designed as a model to study the possibility of translocating small cargo molecules 3'-Azido-2',3'-dideoxythymidine by systemin. The Sys peptides (Sys, N-propiolyl Sys, and AZT-systemin conjugate) were injected into the stem and leaves of mature tomato plant. Its transportation throughout the plant tissue was traced by CE. The peptides were clearly visible in the crude tomato exudates and an optimum separation was achieved in 25 mM phosphate "buffer" at pH 2.5 and a voltage of 20 kV using uncoated fused silica capillary. CE analysis showed that Sys peptides are well separated from tomato plant exudates ingredients and are stable in tomato stem and leaf exudates for up to 24 h. CE study revealed that the Sys peptides are effectively spreading throughout tomato stem and leaves and the peptides could be directly detected in the crude plant matrixes. The translocation was strongly inhibited by sodium azide. The results showed that the established CE method can be used to characterize plant peptides spreading under plant physiological conditions.


Asunto(s)
Electroforesis Capilar/métodos , Péptidos , Solanum lycopersicum , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Péptidos/análisis , Péptidos/metabolismo , Péptidos/fisiología , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Zidovudina/análisis , Zidovudina/metabolismo , Zidovudina/farmacocinética
17.
Sci Rep ; 8(1): 11339, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30054533

RESUMEN

Adipose-derived stem cells (ASCs) have become an important research model in regenerative medicine. However, there are controversies regarding the impact of prolonged cell culture on the ASCs phenotype and their differentiation potential. Hence, we studied 10 clinical ASCs replicates from plastic and oncological surgery patients, in six-passage FBS supplemented cultures. We quantified basic mesenchymal cell surface marker transcripts and the encoded proteins after each passage. In parallel, we investigated the differentiation potential of ASCs into chondrocytes, osteocytes and adipocytes. We further determined the effects of FBS supplementation and subsequent deprivation on the whole transcriptome by comprehensive mRNA and miRNA sequencing. Our results show that ASCs maintain differentiation potential and consistent profile of key mesenchymal markers, with apparent expression of distinct isoforms, in long-term cultures. No significant differences were observed between plastic and oncological surgery cohorts. ASCs in FBS supplemented primary cultures are almost committed to mesenchymal lineages as they express key epithelial-mesenchymal transition genes including early mesenchymal markers. Furthermore, combined mRNA/miRNA expression profiling strongly supports a modulatory role for the miR-30 family in the commitment process to mesenchymal lineages. Finally, we propose improvements to existing qPCR based assays that address alternative isoform expression of mesenchymal markers.


Asunto(s)
Tejido Adiposo/citología , Perfilación de la Expresión Génica , Inmunofenotipificación , Células Madre/metabolismo , Transcripción Genética , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Redes Reguladoras de Genes , Humanos , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
18.
Mol Biotechnol ; 60(2): 124-133, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29313202

RESUMEN

In the presented assay, we elaborated a method for distinguishing sequences that are genetically closely related to each other. This is particularly important in a situation where a fine balance of the allele abundance is a point of research interest. We developed a peptide nucleic acid (PNA) strand invasion technique for the differentiation between multiple sclerosis-associated retrovirus (MSRV) and ERVWE1 sequences, both molecularly similar, belonging to the human endogenous retrovirus HERV-W family. We have found that this method may support the PCR technique in screening for minor alleles which, in certain conditions, may be undetected by the standard PCR technique. We performed the analysis of different ERVWE1 and MSRV template mixtures ranging from 0 to 100% of ERVWE1 in the studied samples, finding the linear correlation between template composition and signal intensity of final reaction products. Using the PNA strand invasion assay, we were able to estimate the relative ERVWE1 expression level in human specimens such as U-87 MG, normal human astrocytes cell lines and placental tissue. The results remained in concordance with those obtained by semi-quantitative or quantitative PCR.


Asunto(s)
Astrocitos/virología , Retrovirus Endógenos/genética , Productos del Gen env/análisis , Ácidos Nucleicos de Péptidos/genética , Placenta/virología , Proteínas Gestacionales/análisis , Replicación Viral/genética , Adulto , Línea Celular , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Retrovirus Endógenos/crecimiento & desarrollo , Retrovirus Endógenos/metabolismo , Femenino , Productos del Gen env/genética , Productos del Gen env/metabolismo , Humanos , Ácidos Nucleicos de Péptidos/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Embarazo , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Transcripción Genética
19.
J Mol Recognit ; 30(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27921323

RESUMEN

The HERV-W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV-W-derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin-1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV-W members is highly desirable. A peptide nucleic acid (PNA)-mediated technique for the discrimination between multiple sclerosis-associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis-associated retrovirus (MSRV) template, shows high selective potential. Single-stranded DNA binding protein facilitates the PNA-mediated, sequence-specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single-stranded DNA-specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV-W env sequences have been evaluated. We believe that PNA/single-stranded DNA binding protein-based application has the potential to selectively discriminate particular HERV-W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho-neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto-immunologic background (psoriasis and lupus erythematosus).


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Retrovirus Endógenos/genética , Ácidos Nucleicos de Péptidos/metabolismo , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Humanos , Modelos Moleculares , Esclerosis Múltiple/virología , Ácidos Nucleicos de Péptidos/química , ARN Viral/metabolismo
20.
Folia Histochem Cytobiol ; 52(4): 257-69, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25530464

RESUMEN

Many biologically active compounds, including macromolecules that are used as various kinds of drugs, must be delivered to the interior of cell or organelles such as mitochondria or nuclei to achieve a therapeutic effect. However, very often, lipophilic cell membrane is impermeable for these molecules. A new method in the transport of macromolecules through the cell membrane is the one based on utilizing cell-penetrating peptides (CPPs). Invented 25 years ago, CPPs are currently the subject of intensive research in many laboratories all over the world. CPPs are short compounds comprising up to 30 amino acid residues, which penetrate the cell membrane but do not cause cell damage. Additionally, CPPs can transfer hydrophilic molecules (peptides, proteins, nucleic acids) which exceed their mass, and for which the cell membrane is generally impermeable. In this review, we concentrate on the cellular uptake mechanism of CPPs and a method of conjunction of CPPs to the transported molecules. We also highlight the potential of CPPs in delivering various kinds of macromolecules into cells, including compounds of therapeutic interest.


Asunto(s)
Péptidos de Penetración Celular/química , Animales , Péptidos de Penetración Celular/metabolismo , Vías de Administración de Medicamentos , Humanos , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...