Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(5): 101, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714629

RESUMEN

BACKGROUND: Niacin, an established therapeutic for dyslipidemia, is hindered by its propensity to induce significant cutaneous flushing when administered orally in its unmodified state, thereby constraining its clinical utility. OBJECTIVE: This study aimed to fabricate, characterize, and assess the in-vitro and in-vivo effectiveness of niacin-loaded polymeric films (NLPFs) comprised of carboxymethyl tamarind seed polysaccharide. The primary objective was to mitigate the flushing-related side effects associated with oral niacin administration. METHODS: NLPFs were synthesized using the solvent casting method and subsequently subjected to characterization, including assessments of tensile strength, moisture uptake, thickness, and folding endurance. Surface characteristics were analyzed using a surface profiler and scanning electron microscopy (SEM). Potential interactions between niacin and the polysaccharide core were investigated through X-ray diffraction experiments (XRD) and Fourier transform infrared spectroscopy (FTIR). The viscoelastic properties of the films were explored using a Rheometer. In-vitro assessments included drug release studies, swelling behavior assays, and antioxidant assays. In-vivo efficacy was evaluated through skin permeation assays, skin irritation assays, and histopathological analyses. RESULTS: NLPFs exhibited a smooth texture with favorable tensile strength and moisture absorption capabilities. Niacin demonstrated interaction with the polysaccharide core, rendering the films amorphous. The films displayed slow and sustained drug release, exceptional antioxidant properties, optimal swelling behavior, and viscoelastic characteristics. Furthermore, the films exhibited biocompatibility and non-toxicity towards skin cells. CONCLUSION: NLPFs emerged as promising carrier systems for the therapeutic transdermal delivery of niacin, effectively mitigating its flushing-associated adverse effects.


Asunto(s)
Administración Cutánea , Liberación de Fármacos , Niacina , Polisacáridos , Ratas Wistar , Absorción Cutánea , Piel , Animales , Ratas , Niacina/administración & dosificación , Niacina/química , Niacina/farmacología , Polisacáridos/química , Polisacáridos/administración & dosificación , Polisacáridos/farmacología , Piel/metabolismo , Piel/efectos de los fármacos , Absorción Cutánea/efectos de los fármacos , Rubor/inducido químicamente , Resistencia a la Tracción , Masculino , Sistemas de Liberación de Medicamentos/métodos , Tamarindus/química , Polímeros/química
2.
Int J Biol Macromol ; 268(Pt 1): 131511, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615867

RESUMEN

This comprehensive review delves into the intricate landscape of glycans and glycoconjugates, unraveling their multifaceted roles across diverse biological dimensions. From influencing fundamental cellular processes such as signaling, recognition, and adhesion to exerting profound effects at the molecular and genetic levels, these complex carbohydrate structures emerge as linchpins in cellular functions and interactions. The structural diversity of glycoconjugates, which can be specifically classified into glycoproteins, glycolipids, and proteoglycans, underscores their importance in shaping the architecture of cells. Beyond their structural roles, these molecules also play key functions in facilitating cellular communication and modulating recognition mechanisms. Further, glycans and glycoconjugates prove invaluable as biomarkers in disease diagnostics, particularly in cancer, where aberrant glycosylation patterns offer critical diagnostic cues. Furthermore, the review explores their promising therapeutic applications, ranging from the development of glycan-based nanomaterials for precise drug delivery to innovative interventions in cancer treatment. This review endeavors to comprehensively explore the intricate functions of glycans and glycoconjugates, with the primary goal of offering valuable insights into their extensive implications in both health and disease. Encompassing a broad spectrum of biological processes, the focus of the review aims to provide a comprehensive understanding of the significant roles played by glycans and glycoconjugates.


Asunto(s)
Glicoconjugados , Polisacáridos , Humanos , Polisacáridos/química , Polisacáridos/metabolismo , Glicoconjugados/química , Glicoconjugados/metabolismo , Animales , Neoplasias/metabolismo , Glicosilación , Glicoproteínas/química , Glicoproteínas/metabolismo
3.
Bioconjug Chem ; 35(6): 766-779, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38625106

RESUMEN

Addressing the complex challenge of healing of bacterially infected wounds, this study explores the potential of lipid nanomaterials, particularly advanced ultradeformable particles (UDPs), to actively influence the wound microenvironment. The research introduces a novel therapeutic approach utilizing silver sulfadiazine (SSD) coupled with vitamin E (VE) delivered through UDPs (ethosomes/transferosomes/transethosomes). Comparative physicochemical characterization of these nanosized drug carriers reveals the superior stability of transethosomes, boasting a zeta potential of -36.5 mV. This method demonstrates reduced side effects compared to conventional therapies, with almost 90% SSD and 72% VE release achieved in wound pH in a sustained manner. Cytotoxicity assessment shows 60% cell viability even at the highest concentration (175 µg/mL), while hemolysis test demonstrates RBC lysis below 5% at a concentration of 250 µg/mL. Vitamin E-SSD-loaded transethosomes (VSTEs) significantly enhance cellular migration and proliferation, achieving 95% closure within 24 h, underscoring their promising efficacy. The synergistic method effectively reduces bacterial burden, evidenced by an 80% reduction in Escherichia coli and Staphylococcus aureus within the wound microenvironment. This approach offers a promising strategy to address complications associated with skin injuries.


Asunto(s)
Portadores de Fármacos , Escherichia coli , Staphylococcus aureus , Vitamina E , Vitamina E/química , Portadores de Fármacos/química , Humanos , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Sulfadiazina de Plata/farmacología , Sulfadiazina de Plata/química , Sulfadiazina de Plata/uso terapéutico , Sulfadiazina de Plata/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Animales , Sistemas de Liberación de Medicamentos , Supervivencia Celular/efectos de los fármacos
4.
Nanoscale ; 16(15): 7453-7466, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38517408

RESUMEN

Pancreatic cancer is one of the major cause of cancer-related deaths worldwide, and is mainly associated with carcinomas of the pancreatic tissue. Current therapies for treating pancreatic cancer have a major drawback related to their low bioavailability and non-specificity, which leads to low therapeutic efficacy and side effects. Luteolin (LUT) has been clinically used for treatment of various types of cancer, although its clinical use has declined owing to its low oral bioavailability. In this work, we prepared an effervescent-based nanocarrier (NG) that rapidly triggers an effervescent reaction and transforms into nanomicelles to modulate the oral bioavailability of the hydrophobic drug Luteolin (LUT). Furthermore, we performed tests to assess its in vitro epithelial cell permeability and cellular internalization on a Caco-2 monolayer. We also performed in vivo toxicity assessment using animal models. Further, we evaluated the nanocarrier system's in vivo efficacy in tumor xenograft pancreatic cancer models. We validated that being pH responsive, our effervescent carrier disassembles at intestinal pH and is absorbed through the intestinal lymphatic system (ILS) to further site-specifically invade the pancreatic cancer cells. Furthermore, the negative surface charge and particle size (450 ± 100 nm) of the nanomicelles helped to internalize LUT through the ILS. We observed that LUT-loaded nanomicelles have significant antipancreatic cancer efficacy by activating caspase-3 activity and downregulating VEGF-A, FAK, TNF-α, and Ki-67. Unlike other drug-delivery systems, we developed noninvasive nanocarrier system has the capability of transporting the hydrophobic drug LUT from the intestine to the tumor site by utilizing the ILS.


Asunto(s)
Luteolina , Neoplasias Pancreáticas , Animales , Humanos , Células CACO-2 , Sistemas de Liberación de Medicamentos , Intestinos
5.
Front Med (Lausanne) ; 10: 1096458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265481

RESUMEN

Visceral leishmaniasis (VL), a vector-borne disease, is caused by an obligate intramacrophage, kinetoplastid protozoan parasite of the genus Leishmania. Globally, VL is construed of diversity and complexity concerned with high fatality in tropics, subtropics, and Mediterranean regions with ~50,000-90,000 new cases annually. Factors such as the unavailability of licensed vaccine(s), insubstantial measures to control vectors, and unrestrained surge of drug-resistant parasites and HIV-VL co-infections lead to difficulty in VL treatment and control. Furthermore, VL treatment, which encompasses several problems including limited efficacy, emanation of drug-resistant parasites, exorbitant therapy, and exigency of hospitalization until the completion of treatment, further exacerbates disease severity. Therefore, there is an urgent need for the development of safe and efficacious therapies to control and eliminate this devastating disease. In such a scenario, biotherapy/immunotherapy against VL can become an alternative strategy with limited side effects and no or nominal chance of drug resistance. An extensive understanding of pathogenesis and immunological events that ensue during VL infection is vital for the development of immunotherapeutic strategies against VL. Immunotherapy alone or in combination with standard anti-leishmanial chemotherapeutic agents (immunochemotherapy) has shown better therapeutic outcomes in preclinical studies. This review extensively addresses VL treatment with an emphasis on immunotherapy or immunochemotherapeutic strategies to improve therapeutic outcomes as an alternative to conventional chemotherapy.

6.
Biochim Biophys Acta Gen Subj ; 1867(9): 130396, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37271407

RESUMEN

BACKGROUND: Liposomes are predominantly used sorts of nanocarriers for active a targeted delivery through surface functionalization using targeting ligand. The folate receptors are overexpressed in various cancers including breast cancer and because of its binding aptitude specifically to folate receptors, folic acid became the attractive ligand. METHODS: In this research, we have developed a folate and Poly-l-Lysine conjugate and coated this conjugate onto the liposomes. The prepared liposomes were characterized using DLS, FTIR, NMR, SEM, TEM, XRD, AFM, stability and drug release studies. Furthermore, in vitro studies were carried out on FR overexpressed breast cancer cell line. RESULTS: The FA-LUT-ABC-Lip have diameter of 183 ± 3.17 nm with positive surface charge +33.65 ± 3 mV and the drug release studies confirm the NIR responsive payload cleavage. The coated formulation (in presence of NIR light) effectively reduced the IC50 values and kills breast cancer cells through FR mediated internalization and accelerated drug release. Moreover, LUT Formulation shows anticancer effect due to significant inhibition of cell migration and proliferation by regulating VEGF expression and induced apoptosis through the caspase-3 up-regulation. CONCLUSION: It is evident from the in vitro studies that the formulation was found to be very effective and can be explored for triggered and targeted delivery of the substances through active targeting. GENERAL SIGNIFICANCE: Combining receptor mediated drug delivery with triggered release aid in more amounts of drug reaching the target site and achieving enhanced therapeutic activity.


Asunto(s)
Neoplasias de la Mama , Liposomas , Humanos , Femenino , Liposomas/química , Neoplasias de la Mama/tratamiento farmacológico , Ligandos , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo
7.
ACS Biomater Sci Eng ; 9(6): 2902-2910, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34463477

RESUMEN

In this study, 2-hydroxypropyl-ß-cyclodextrin (HPßCD) grafted solid lipid nanoparticle (SLN)-based bioconjugate was synthesized and used for administering a combination of melatonin (Mel) and amphotericin B (AmB) orally for effective visceral leishmaniasis (VL) treatment. The formulations (HPCD-Mel-AmB SLN) were synthesized by the emulsion solvent evaporation method. HPCD-Mel-AmB SLN showed a high loading capacity and a high entrapment efficiency of AmB (% DL = 9.0 ± 0.55 and % EE = 87.9 ± 0.57) and Mel (% DL = 7.5 ± 0.51 and % EE = 63 ± 6.24). The cumulative percent release of AmB and Mel was 66.10 and 73.06%, respectively, up to 72 h. Time-dependent cellular uptake was noticed for HPCD-Mel-AmB SLN for 4 h. Further, HPCD-Mel-AmB SLN did not show any toxic effects on J774A.1 macrophages and Swiss albino mice. HPCD-Mel-AmB SLN (10 mg/kg ×5 days, p.o.) has significantly diminished (98.89%) the intracellular parasite load in liver tissues of L. donovani-infected BALB/c mice, subsequently highlighting the role of melatonin toward an effective strategy in combating leishmanial infection. Therefore, these results indicated that administration of HPCD-Mel-AmB SLN improve the therapeutic index of the first-line drug in addition to the introduction of biological agent and would be a promising therapeutic candidate for effective VL therapy. In the present study, the objective is to test the efficacy of the chemotherapeutic approach in combination with a biological immunomodulatory agent against leishmanial infection using in vitro and in vivo studies. This information suggests that melatonin could be an efficacious and potent antileishmanial agent.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Melatonina , Ratones , Animales , Anfotericina B/farmacología , Anfotericina B/uso terapéutico , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Melatonina/farmacología , Melatonina/uso terapéutico , Factores Biológicos/farmacología , Factores Biológicos/uso terapéutico , Administración Oral , Ratones Endogámicos BALB C
8.
Life Sci ; 310: 121133, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306866

RESUMEN

Lung Cancer (LC) is the malignant tumor of the lungs which is defined by the unrestricted cell development in the lung tissues which if left untreated may migrate to different regions of the body. LC accounts for 12% of the total cancer diagnosis and is among the most occurring malignancies in both genders. Radiotherapy, surgery, and chemotherapy are the treatment options for LC. The obstacles faced by chemotherapy include faster elimination, affecting healthy cells and poor targeting. The application of nanotechnology in drug delivery has gained profound value with the development of various nanoparticulate systems such as nanoparticles (NPs), liposomes etc. Some limitations exhibited by the conventional nanocarriers include leakage of the drug and stability issues. In order to overcome these problems, approaches such as coating of the NPs and use of stimuli-responsive nanocarriers have been utilized. These approaches also aid in boosting pre-existing properties and achieving organ restricted drug delivery. Stimuli-responsive DDS (drug delivery systems) are those systems in which the drug is released or delivered via a stimulus. Due to the reason that cancer tissues exhibit characteristic pH, elevated enzyme levels, these sort of smart nanocarriers have found their application in targeting cancer. Various nanocarriers incorporating various molecules have also been formulated and tested against lung cancer. In this review, we have discussed various classes of stimuli-responsive nanocarriers such as endogenous stimuli-responsive nanocarriers which include pH-responsive nanocarriers, enzyme-responsive nanocarriers and exogenous stimuli-responsive nanocarriers such as thermoresponsive, magnetic-responsive, ultrasound-responsive, photoresponsive nanocarriers along with their application in targeting LC.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Neoplasias , Femenino , Masculino , Humanos , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Nanotecnología , Neoplasias Pulmonares/tratamiento farmacológico , Pulmón/patología , Sistemas de Liberación de Medicamentos
9.
Life Sci ; 309: 120996, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36170890

RESUMEN

INTRODUCTION: Breast cancer (BC) accounts for the majority of cancers among the female population. Anomalous activation of various signaling pathways has become an issue of concern. The JAK-STAT signaling pathway is activated in numerous cancers, including BC. STAT3 is widely involved in BCs, as 40 % of BCs display phosphorylated STAT3. JAK-STAT signaling is crucial for proliferation, survival, metastasis and other cellular events associated with the tumor microenvironment. Hence, targeting this pathway has become an area of interest among researchers. KEY FINDINGS: This review article focuses on the role of STAT3 in the initiation, proliferation, progression and metastasis of BC. The roles of various phytochemicals, synthetic molecules and biologicals against JAK-STAT and STAT3 in various cancers have been discussed, with special emphasis on BC. SIGNIFICANCE: JAK and STAT3 are involved in various phases from initiation to metastasis, and targeting this pathway is a promising approach to inhibit the various stages of BC development and to prevent metastasis. A number of phytochemicals and synthetic and biological molecules have demonstrated potential inhibitory effects on JAK and STAT3, thereby paving the way for the development of better therapeutics against BC.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Microambiente Tumoral , Proliferación Celular , Fitoquímicos , Quinasas Janus/metabolismo
10.
Biomater Sci ; 10(19): 5669-5688, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36017751

RESUMEN

Surface-functionalized vitamin B12 (VB12) biocompatible nanoparticles exploit the well-characterized uptake pathway of VB12, shielding it from enzymatic degradation and inadequate absorption. In this perspective, subsequent to escalated mucus interaction and diffusion analysis, the nanoparticles were investigated by immunostaining with the anti-CD320 antibody, and their internalization mechanisms were examined by selectively blocking specific uptake processes. It was observed that their internalization occurred via an energy-dependent clathrin-mediated mechanism, simultaneously highlighting their remarkable ability to bypass the P-glycoprotein efflux. In particular, the synthesized nanoparticles were evaluated for their cytocompatibility by analyzing cellular proliferation, membrane viscoelasticity, and fluidity by fluorescence recovery after photobleaching and oxidative-stress detection, making them well-suited for successful translation to a clinical setup. Our previous in vitro antileishmanial results were paramount for their further in vivo and toxicity analysis, demonstrating their targeted therapeutic efficiency. The augmented surface hydrophilicity, which is attributed to VB12, and monomerization of amphotericin B in the lipid core strengthened the oral bioavailability and stability of the nanoparticles, as evidenced by the fluorescence resonance energy transfer analysis.


Asunto(s)
Nanopartículas , Vitamina B 12 , Subfamilia B de Transportador de Casetes de Unión a ATP , Anfotericina B/farmacología , Clatrina , Lípidos , Vitaminas
11.
Biochim Biophys Acta Gen Subj ; 1866(8): 130157, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35500665

RESUMEN

BACKGROUND: In this study, the transport mechanism of fluorescently labeled hydroxypropyl beta-cyclodextrin (HPß-CD) modified SLNs loaded with Amphotericin B (AmB) and Paromomycin (PM) have been investigated by using in vitro human epithelial cell model of a human colonic adenocarcinoma cell line (Caco-2). METHODS: Fabrication of HPß-CD modified fluorescently labeled AmB and PM-loaded SLNs (HPꞵ-CD-FITC-DDSLNs) was performed by using the emulsion solvent evaporation method. Caco-2 cells were used to investigate different endocytosis and exocytosis pathways to be followed by the nanoparticles. Intracellular co-localization of nanoformulation with different organelles was investigated. RESULTS: The toxicity studies have shown the biocompatible nature of the modified lipid nanoparticles. The average particle size and PDI of HPꞵ-CD-FITC-DDSLNs were found to be 187 ± 2.3 nm and 0.31 respectively. The most prevalent endocytosis mechanisms were shown to be macropinocytosis and caveolae (lipid raft) dependent pathways. The Golgi complex and endoplasmic reticulum are the confirmed destinations of HPꞵ-CD-FITC-DDSLNs in the Caco-2 cell monolayer, even though lysosomes have been shown to escape and play a minimal role during nanoparticle transport. CONCLUSION: HPꞵ-CD-DDSLNs were found to be biocompatible and safe for delivering hydrophobic as well as hydrophilic drugs through an oral route to target the RES system for the treatment of visceral leishmania. GENERAL SIGNIFICANCE: Understanding the process underlying the transport of modified solid lipid nanoparticles for oral drug delivery could be useful for many medicines with low solubility, permeability, and stability.


Asunto(s)
Nanopartículas , beta-Ciclodextrinas , Células CACO-2 , Fluoresceína-5-Isotiocianato , Humanos , Liposomas , Nanopartículas/química
12.
Colloids Surf B Biointerfaces ; 215: 112520, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35489319

RESUMEN

Nerolidol is a sesquiterpene that occurs naturally and possesses a diverse set of biological characteristics including anticancer activity but has limited solubility, bioavailability, and fast hepatic metabolism. The goal of this study was to develop a nanocarrier system encapsulating a bioactive as well as to evaluate its efficacy in Human Colorectal Cell Line. Solid lipid nanoparticles were fabricated by the emulsion solvent evaporation method and determined the particle size, polydispersity index (PDI), zeta potential, % entrapment efficiency, scanning electron microscopy (SEM), transmission electron microscopy (TEM), drug-excipient interaction study of developed nanoparticles. MTT assay was used to assess the cytotoxicity of formulations in vitro. Nerolidol loaded solid lipid nanoparticles (NR-LNPs) have presented satisfactory properties: mean particles diameter of 159 ± 4.89 nm, PDI of 0.32 ± 0.01, the zeta potential value was found to be -10 ± 1.97 and % entrapment efficiency 71.3% ± 6.11. The formulations demonstrated enhanced biological activity due to enhanced solubility and stability of the bioactive after loading into a nanoformulation along with the better internalization inside the cells.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Sesquiterpenos , Línea Celular , Neoplasias Colorrectales/tratamiento farmacológico , Portadores de Fármacos/química , Humanos , Lípidos/química , Liposomas , Nanopartículas/química , Tamaño de la Partícula , Sesquiterpenos/farmacología
13.
Int J Biol Macromol ; 204: 373-385, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35149096

RESUMEN

Herein, carboxymethyl chitosan (CMC) grafted lipid nanoformulations were facilely prepared by thin-film hydration method as a highly efficient biocompatible anti-leishmanial carrier encapsulating amphotericin B (AmB). Nanoformulations were characterized for their physicochemical characteristics wherein TEM analysis confirmed the spherical structure, whereas FTIR analysis revealed the conjugation of CMC onto nanoformulations and confirmed the free state of AmB. Furthermore, the wettability study confirmed the presence of CMC on the surface of nanoformulations attributed to the enhanced hydrophilicity. Surface hydrophilicity additionally contributes towards consistent mucin retention ability for up to 6 h, superior mucoadhesiveness, and hence enhanced bioavailability. The proposed nanoformulations with high encapsulation and drug loading properties displayed controlled drug release in the physiological microenvironment. In vitro, antileishmanial results showed an astounding 97% inhibition in amastigote growth. Additionally, in vivo studies showed that treatment with nanoformulations significantly reduced the liver parasitic burden (93.5%) without causing any toxicity when given orally.


Asunto(s)
Antiprotozoarios , Quitosano , Nanopartículas , Anfotericina B/química , Antiprotozoarios/química , Quitosano/química , Portadores de Fármacos , Lípidos/química , Nanopartículas/química
14.
Artículo en Inglés | MEDLINE | ID: mdl-33142369

RESUMEN

Visceral leishmaniasis (VL) is still a major public health concern in developing countries having the highest outbreak and mortality potential. While the treatment of VL has greatly improved in recent times, the current diagnostic tools are limited for use in the post-elimination setting. Although conventional serological methods of detection are rapid, they can only differentiate between active disease in strict combination with clinical criteria, and thus are not sufficient enough to diagnose relapse patients. Therefore, there is a dire need for a portable, authentic, and reliable assay that does not require large space, specialized instrument facilities, or highly trained laboratory personnel and can be carried out in primary health care settings. Advances in the nanodiagnostic approaches have led to the expansion of new frontiers in the concerned area. The nanosized particles are blessed with an ability to interact one-on-one with the biomolecules because of their unique optical and physicochemical properties and high surface area to volume ratio. Biomolecular detection systems based on nanoparticles (NPs) are cost-effective, rapid, nongel, non-PCR, and nonculture based that provide fast, one-step, and reliable results with acceptable sensitivity and specificity. In this review, we discuss different NPs that are being used for the identification of molecular markers and other biomarkers, such as toxins and antigens associated with leishmaniasis. The most promising diagnostic approaches have been included in the article, and the ability of biomolecular recognition, advantages, and disadvantages have been discussed in detail to showcase the enormous potential of nanodiagnostics in human and veterinary medicine. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Biosensing.


Asunto(s)
Leishmaniasis Visceral , Leishmaniasis , Nanomedicina , Técnicas Biosensibles , Humanos , Leishmaniasis/diagnóstico , Leishmaniasis Visceral/diagnóstico , Nanopartículas , Sensibilidad y Especificidad
15.
Front Cell Infect Microbiol ; 10: 570573, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178626

RESUMEN

The design and development of new pharmaceutical formulations for the existing anti-leishmanial is a new strategic alternate to improve efficacy and safety rather than new drug discovery. Herein hybrid solid lipid nanoparticles (SLN) have been engineered to direct the oral delivery of two anti-leishmanial drugs amphotericin B (AmB) and paromomycin (PM). The combinatorial nanocarriers consist of conventional SLN, antileishmanial drugs (AmB and PM) which have been functionalized with chitosan (Cs) grafted onto the external surface. The Cs-SLN have the mean particle size of 373.9 ± 1.41 nm, polydispersity index (PDI) of 0.342 ± 0.02 and the entrapment efficiency for AmB and PM was found to be 95.20 ± 3.19% and 89.45 ± 6.86 %, respectively. Characterization of SLN was performed by scanning electron microscopy and transmission electron microscopy. Complete internalization of the formulation was observed in Caco-2 cells. Cs-SLN has shown a controlled and slow drug release profile over a period of 72 h and was stable at gastrointestinal fluids, confirmed by simulated gastro-intestinal fluids study. Cs coating enhanced the mucoadhesive property of Cs-SLN. The in-vitro anti-leishmanial activity of Cs-SLN (1 µg/ml) has shown a maximum percentage of inhibition (92.35%) on intra-cellular amastigote growth of L. donovani.


Asunto(s)
Productos Biológicos , Quitosano , Nanopartículas , Anfotericina B/farmacología , Células CACO-2 , Portadores de Fármacos , Humanos , Paromomicina , Tamaño de la Partícula
16.
Mater Sci Eng C Mater Biol Appl ; 117: 111279, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919641

RESUMEN

Despite the advancement of new anti-leishmanials, amphotericin B (AmB) prevails as one of the most potent agent in the treatment of visceral leishmaniasis (VL), a neglected tropical disease affecting mostly poverty ridden and underdeveloped regions of the globe. Nonetheless, many patients display intolerance to parenteral AmB, notably at higher dosages. Also, conventional AmB presents an apparently poor absorption. Therefore, to improve AmB bioavailability and overcome multiple barriers for oral delivery of AmB, we fabricated a promising vitamin B12-stearic acid (VBS) conjugate coated solid lipid nanoparticles (SLNs) encapsulated with AmB (VBS-AmB-SLNs) by a combination of double emulsion solvent evaporation and thermal sensitive hydrogel techniques. VBS-AmB-SLNs showed a particle size of 306.66 ± 3.35 nm with polydispersity index of 0.335 ± 0.08 while the encapsulation efficiency and drug loading was observed to be 97.99 ± 1.6% and 38.5 ± 5.6% respectively. In vitro drug release showed a biphasic release pattern and chemical stability of AmB was ensured against simulated gastrointestinal fluids. Cellular uptake studies confirmed complete internalization of the formulation. Anti-leishmanial evaluation against intramacrophage amastigotes showed an enhanced efficacy of 94% which was significantly (P < 0.01) higher than conventional AmB without showing any toxic effects on J774A.1 cells. VBS-AmB-SLNs could serve as a potential therapeutic strategy against VL.


Asunto(s)
Anfotericina B , Nanopartículas , Anfotericina B/farmacología , Humanos , Lípidos , Ácidos Esteáricos , Vitamina B 12 , Vitaminas
17.
Chem Phys Lipids ; 231: 104946, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32621810

RESUMEN

In the current study, we have focused on the design, development and in-vitro evaluation of d-α-tocopheryl polyethylene glycol 1000 succinate modified amphotericin B (AmB) and paromomycin (PM) loaded solid lipid nanoparticles (TPGS-SLNPs) by emulsion-solvent evaporation method. The optimized TPGS-SLNPs had a mean particle size of 199.4 ± 18.9 nm with a polydispersity index of 0.22 ± 0.14 and entrapment efficiency for AmB and PM was found to be 94 ± 1.5 % and 89 ± 0.50 % respectively. The prepared lipid nanoparticles were characterized by Powdered X-ray diffraction study, Fourier transform infrared spectroscopy, Nuclear magnetic resonance spectroscopy to confirm the absence of any interaction between lipids and drugs. The developed formulation showed a sustained drug release over a period of 48 h and were stable at different temperatures. Finally, TPGS-SLNPs (1 µg/mL) was found to significantly (P < 0.001) mitigate the intra-cellular amastigote growth compared to free AmB. The results obtained suggest TPGS-SLNPs could be an efficient carrier for delivering poorly water-soluble drugs and efficiently enhance its therapeutic potential.


Asunto(s)
Anfotericina B/farmacología , Antiprotozoarios/farmacología , Sistemas de Liberación de Medicamentos , Leishmania donovani/efectos de los fármacos , Paromomicina/farmacología , Anfotericina B/química , Animales , Antiprotozoarios/química , Línea Celular , Portadores de Fármacos/química , Lípidos/química , Ratones , Nanopartículas/química , Pruebas de Sensibilidad Parasitaria , Paromomicina/química , Tamaño de la Partícula , Polietilenglicoles/química , Succinatos/química , Propiedades de Superficie
18.
Sci Rep ; 10(1): 12243, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699361

RESUMEN

The development of an effective oral therapeutics is an immediate need for the control and elimination of visceral leishmaniasis (VL). We exemplify the preparation and optimization of 2-hydroxypropyl-ß-cyclodextrin (HPCD) modified solid lipid nanoparticles (SLNs) based oral combinational cargo system of Amphotericin B (AmB) and Paromomycin (PM) against murine VL. The emulsion solvent evaporation method was employed to prepare HPCD modified dual drug-loaded solid lipid nanoparticles (m-DDSLNs). The optimized formulations have a mean particle size of 141 ± 3.2 nm, a polydispersity index of 0.248 ± 0.11 and entrapment efficiency for AmB and PM was found to be 96% and 90% respectively. The morphology of m-DDSLNs was confirmed by scanning electron microscopy and transmission electron microscopy. The developed formulations revealed a sustained drug release profile upto 57% (AmB) and 21.5% (PM) within 72 h and were stable at both 4 °C and 25 °C during short term stability studies performed for 2 months. Confocal laser scanning microscopy confirmed complete cellular internalization of SLNs within 24 h of incubation. In vitro cytotoxicity study against J774A.1 macrophage cells confirmed the safety and biocompatibility of the developed formulations. Further, m-DDSLNs did not induce any hepatic/renal toxicities in Swiss albino mice. The in vitro simulated study was performed to check the stability in simulated gastric fluids and simulated intestinal fluids and the release was found almost negligible. The in vitro anti-leishmanial activity of m-DDSLNs (1 µg/ml) has shown a maximum percentage of inhibition (96.22%) on intra-cellular amastigote growth of L. donovani. m-DDSLNs (20 mg/kg × 5 days, p.o.) has significantly (P < 0.01) reduced the liver parasite burden as compared to miltefosine (3 mg/kg × 5 days, p.o.) in L. donovani-infected BALB/c mice. This work suggests that the superiority of as-prepared m-DDSLNs as a promising approach towards the oral delivery of anti-leishmanial drugs.


Asunto(s)
Anfotericina B/química , Anfotericina B/farmacología , Leishmania donovani/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Nanopartículas/química , Paromomicina/química , Paromomicina/farmacología , Animales , Antiprotozoarios/química , Antiprotozoarios/farmacología , Línea Celular , Emulsiones/química , Lípidos , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión/métodos , Tamaño de la Partícula , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/farmacología
19.
Front Chem ; 8: 510, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719770

RESUMEN

Visceral leishmaniasis (VL) has been a major health concern in the developing world, primarily affecting impoverished people. It is caused by a protozoan parasite Leishmania donovani and is characterized by immune dysfunction that can lead to deadly secondary infections. Several adverse side effects limit the existing treatment options; hence, the need of the hour is some drug option with high efficacy and no toxicity. To make targeted delivery of Amphotericin B (AmB), we have used amine-functionalized versions of carbon nanostructures, namely f-CNT and f-Graphene (f-Grap). The results with f-Grap-AmB, because of a much larger surface area, were expected to be better. However, the results obtained by us showed only marginal improvement (IC50 f-Grap-AmB; 0.0038 ± 0.00119 µg/mL). This is, in all likelihood, due to the agglomeration effect of f-Grap-AmB, which is invariably obtained with graphene. To resolve this issue, we have synthesized a graphene-CNT composite (graphene 70% and CNT 30% by weight). Because CNT is dispersed in between graphene sheets, the agglomeration effect is avoided, and our study suggests that the f-Composite-AmB (f-Comp-AmB) showed no toxicity against the murine J774A.1 macrophage cell line and did not induce any hepatic or renal toxicity in Swiss albino mice. The f-Comp-AmB also showed a remarkable elevation in the in vitro and in vivo antileishmanial efficacy in comparison to AmB and f-CNT-AmB or f-Grap-AmB in J774A.1 and Golden Syrian hamsters, respectively. Additionally, we have also observed that the percentage suppression of parasite replication in the spleen of the hamster was significantly higher in the f-Comp-AmB (97.79 ± 0.2375) treated group in comparison with the AmB (85.66 ± 1.164) treated group of hamsters. To conclude, f-Comp-AmB could be a safe and reliable therapeutic option over the other carbon-based nanoparticles (NPs), i.e., f-CNT-AmB, f-Grap-AmB, and conventional AmB.

20.
Med Hypotheses ; 144: 109956, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32526506

RESUMEN

Visceral leishmaniasis (VL) is a neglected tropical disease with high incidence of mortality and morbidity. The emergence of drug resistant parasites, severe toxic effects of existing anti-leishmanials, and nonexistence of an effective vector control measures and human vaccine(s) against VL poses a serious problem to VL treatment and control. In VL, the disease pathogenicity is correlated with the up-regulation of Th2 cytokines (IL-4, IL-10 and TGF-ß), which can deactivate macrophages and favors the growth of intracellular parasite and disease clearance is expedited through the increased levels of Th1 mediated cytokines (IL-12) which can activate macrophages to release IFN-γ; stimulates inducible NOS to release NO and kills the leishmania parasite. Enkephalins (ENKs), are endogenous neuropeptides with immune stimulatory properties. ENKs and its fragmented peptides at lower concentrations activates Th1 type cytokines and inhibits Th2 type cytokines, which may be helpful in parasite clearance. ENKs in combination with currently available anti-leishmanial drugs may be helpful in reducing the toxicity and duration of therapy. Therefore, we hypothesized that the ENKs alone or in combination with current recommended anti-leishmanial agents might be effective in the treatment of VL with enhanced efficacy and safety profile.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Citocinas , Encefalinas , Humanos , Interferón gamma , Interleucina-12 , Leishmaniasis Visceral/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...