RESUMEN
Persistence of chronic hepatitis B (CHB) is attributed to maintenance of the intrahepatic pool of the viral covalently closed circular DNA (cccDNA), which serves as the transcriptional template for all viral gene products required for replication. Current nucleos(t)ide therapies for CHB prevent virus production and spread but have no direct impact on cccDNA or expression of viral genes. We describe a potential curative approach using a highly specific engineered ARCUS nuclease (ARCUS-POL) targeting the hepatitis B virus (HBV) genome. Transient ARCUS-POL expression in HBV-infected primary human hepatocytes produced substantial reductions in both cccDNA and hepatitis B surface antigen (HBsAg). To evaluate ARCUS-POL in vivo, we developed episomal adeno-associated virus (AAV) mouse and non-human primate (NHP) models containing a portion of the HBV genome serving as a surrogate for cccDNA. Clinically relevant delivery was achieved through systemic administration of lipid nanoparticles containing ARCUS-POL mRNA. In both mouse and NHP, we observed a significant decrease in total AAV copy number and high on-target indel frequency. In the case of the mouse model, which supports HBsAg expression, circulating surface antigen was durably reduced by 96%. Together, these data support a gene-editing approach for elimination of cccDNA toward an HBV cure.
Asunto(s)
Hepatitis B Crónica , Hepatitis B , Animales , Antivirales , ADN Circular/genética , ADN Viral/genética , Dependovirus/genética , Hepatitis B/terapia , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/uso terapéutico , Virus de la Hepatitis B/genética , Humanos , Liposomas , Ratones , Nanopartículas , Replicación ViralRESUMEN
OBJECTIVE: Therapeutic strategies silencing and reducing the hepatitis B virus (HBV) reservoir, the covalently closed circular DNA (cccDNA), have the potential to cure chronic HBV infection. We aimed to investigate the impact of small interferring RNA (siRNA) targeting all HBV transcripts or pegylated interferon-α (peg-IFNα) on the viral regulatory HBx protein and the structural maintenance of chromosome 5/6 complex (SMC5/6), a host factor suppressing cccDNA transcription. In particular, we assessed whether interventions lowering HBV transcripts can achieve and maintain silencing of cccDNA transcription in vivo. DESIGN: HBV-infected human liver chimeric mice were treated with siRNA or peg-IFNα. Virological and host changes were analysed at the end of treatment and during the rebound phase by qualitative PCR, ELISA, immunoblotting and chromatin immunoprecipitation. RNA in situ hybridisation was combined with immunofluorescence to detect SMC6 and HBV RNAs at single cell level. The entry inhibitor myrcludex-B was used during the rebound phase to avoid new infection events. RESULTS: Both siRNA and peg-IFNα strongly reduced all HBV markers, including HBx levels, thus enabling the reappearance of SMC5/6 in hepatocytes that achieved HBV-RNA negativisation and SMC5/6 association with the cccDNA. Only IFN reduced cccDNA loads and enhanced IFN-stimulated genes. However, the antiviral effects did not persist off treatment and SMC5/6 was again degraded. Remarkably, the blockade of viral entry that started at the end of treatment hindered renewed degradation of SMC5/6. CONCLUSION: These results reveal that therapeutics abrogating all HBV transcripts including HBx promote epigenetic suppression of the HBV minichromosome, whereas strategies protecting the human hepatocytes from reinfection are needed to maintain cccDNA silencing.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/virología , Animales , Quimera , ADN Circular/metabolismo , Genoma Viral , Hepatitis B Crónica/prevención & control , Humanos , RatonesRESUMEN
Hepatitis B virus (HBV) can integrate into the chromosomes of infected hepatocytes, creating potentially oncogenic lesions that can lead to hepatocellular carcinoma (HCC). However, our current understanding of integrated HBV DNA architecture, burden, and transcriptional activity is incomplete due to technical limitations. A combination of genomics approaches was used to describe HBV integrations and corresponding transcriptional signatures in three HCC cell lines: huH-1, PLC/PRF/5, and Hep3B. To generate high-coverage, long-read sequencing data, a custom panel of HBV-targeting biotinylated oligonucleotide probes was designed. Targeted long-read DNA sequencing captured entire HBV integration events within individual reads, revealing that integrations may include deletions and inversions of viral sequences. Surprisingly, all three HCC cell lines contain integrations that are associated with host chromosomal translocations. In addition, targeted long-read RNA sequencing allowed for the assignment of transcriptional activity to specific integrations and resolved the contribution of overlapping HBV transcripts. HBV transcripts chimeric with host sequences were resolved in their entirety and often included >1,000 bp of host sequence. This study provides the first comprehensive description of HBV integrations and associated transcriptional activity in three commonly utilized HCC-derived cell lines. The application of novel methods sheds new light on the complexity of these integrations, including HBV bidirectional transcription, nested transcripts, silent integrations, and host genomic rearrangements. The observation of multiple HBV-associated chromosomal translocations gives rise to the hypothesis that HBV is a driver of genetic instability and provides a potential new mechanism for HCC development. IMPORTANCE HCC-derived cell lines have served as practical models to study HBV biology for decades. These cell lines harbor multiple HBV integrations and express only HBV surface antigen (HBsAg). To date, an accurate description of the integration burden, architecture, and transcriptional profile of these cell lines has been limited due to technical constraints. We have developed a targeted long-read sequencing assay that reveals the entire architecture of integrations in these cell lines. In addition, we identified five chromosomal translocations with integrated HBV DNA at the interchromosomal junctions. Incorporation of long-read transcriptome sequencing (RNA-Seq) data indicated that many integrations and translocations were transcriptionally silent. The observation of multiple HBV-associated translocations has strong implications regarding the potential mechanisms for the development of HBV-associated HCC.
Asunto(s)
Carcinoma Hepatocelular/virología , Línea Celular Tumoral , ADN Viral/genética , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Transcripción Genética , Translocación Genética , Integración Viral , Humanos , Análisis de Secuencia de ADN , Análisis de Secuencia de ARNRESUMEN
Sofosbuvir (SOF) is a nucleotide prodrug which has been used as a backbone for the clinical treatment of hepatitis C viral infection. Because sofosbuvir undergoes complex first pass metabolism, including metabolic activation to form its pharmacologically active triphosphate (GS-331007-TP) to inhibit the viral RNA polymerase in the liver, it is difficult to project the human dose for clinical evaluation based on preclinical data. Selecting an appropriate animal model for drug exposure in the target tissue is challenging due to differences in absorption, stability, hepatic uptake, and intracellular activation across species. Efficient liver delivery has been established in human liver following administration in a clinical trial of patients receiving sofosbuvir prior to liver transplantation. Using the clinical liver exposure as a benchmark, we assessed and compared the pharmacokinetic profile in mouse, rat, hamster, dog and monkey. Liver accumulation was also assessed in the PXB mouse model in which the liver is mostly populated with human hepatocytes. At human equivalent dose, the hepatic concentrations of GS-331007-TP in dog and PXB mouse were comparable to those observed in the human livers. In these species, high and sustained levels of GS-331007-TP were observed in both primary hepatocytes in vitro and the liver in vivo.