RESUMEN
In confronting the global spread of the coronavirus disease COVID-19 pandemic we must have coordinated medical, operational, and political responses. In all efforts, data is crucial. Fundamentally, and in the possible absence of a vaccine for 12 to 18 months, we need universal, well-documented testing for both the presence of the disease as well as confirmed recovery through serological tests for antibodies, and we need to track major socioeconomic indices. But we also need auxiliary data of all kinds, including data related to how populations are talking about the unfolding pandemic through news and stories. To in part help on the social media side, we curate a set of 2000 day-scale time series of 1- and 2-grams across 24 languages on Twitter that are most 'important' for April 2020 with respect to April 2019. We determine importance through our allotaxonometric instrument, rank-turbulence divergence. We make some basic observations about some of the time series, including a comparison to numbers of confirmed deaths due to COVID-19 over time. We broadly observe across all languages a peak for the language-specific word for 'virus' in January 2020 followed by a decline through February and then a surge through March and April. The world's collective attention dropped away while the virus spread out from China. We host the time series on Gitlab, updating them on a daily basis while relevant. Our main intent is for other researchers to use these time series to enhance whatever analyses that may be of use during the pandemic as well as for retrospective investigations.
Asunto(s)
COVID-19/psicología , Pandemias/estadística & datos numéricos , Medios de Comunicación Sociales/tendencias , Atención , COVID-19/etiología , Infecciones por Coronavirus/etiología , Infecciones por Coronavirus/psicología , Humanos , Lenguaje , Estudios Retrospectivos , SARS-CoV-2/patogenicidadRESUMEN
Although population structure has long been recognized as relevant to the spread of infectious disease, traditional mathematical models have understated the role of nonhomogenous mixing in populations with geographical and social structure. Recently, a wide variety of spatial and network models have been proposed that incorporate various aspects of interaction structure among individuals. However, these more complex models necessarily suffer from limited tractability, rendering general conclusions difficult to draw. In seeking a compromise between parsimony and realism, we introduce a class of metapopulation models in which we assume homogeneous mixing holds within local contexts, and that these contexts are embedded in a nested hierarchy of successively larger domains. We model the movement of individuals between contexts via simple transport parameters and allow diseases to spread stochastically. Our model exhibits some important stylized features of real epidemics, including extreme size variation and temporal heterogeneity, that are difficult to characterize with traditional measures. In particular, our results suggest that when epidemics do occur the basic reproduction number R(0) may bear little relation to their final size. Informed by our model's behavior, we suggest measures for characterizing epidemic thresholds and discuss implications for the control of epidemics.
Asunto(s)
Enfermedades Transmisibles/epidemiología , Brotes de Enfermedades , Estructura de Grupo , Modelos Teóricos , Dinámica Poblacional , Enfermedades Transmisibles/transmisión , Simulación por Computador , Humanos , Densidad de PoblaciónRESUMEN
We report on a global social-search experiment in which more than 60,000 e-mail users attempted to reach one of 18 target persons in 13 countries by forwarding messages to acquaintances. We find that successful social search is conducted primarily through intermediate to weak strength ties, does not require highly connected "hubs" to succeed, and, in contrast to unsuccessful social search, disproportionately relies on professional relationships. By accounting for the attrition of message chains, we estimate that social searches can reach their targets in a median of five to seven steps, depending on the separation of source and target, although small variations in chain lengths and participation rates generate large differences in target reachability. We conclude that although global social networks are, in principle, searchable, actual success depends sensitively on individual incentives.