Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicol Sci ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240656

RESUMEN

Metabolic syndrome is increasing worldwide, particularly in rural communities, where residents have a higher risk of exposure to pesticides. We investigated whether six commonly used agricultural pesticides on corn and soy fields possess adipogenic and metabolic disruption activity. Exposure to two of these pesticides, the herbicides acetochlor and metolachlor, induced adipogenesis in vitro in mouse 3T3-L1 preadipocytes. The most potent compound, acetochlor, was selected for further studies in zebrafish. Acetochlor exposure induced morphological malformations and lethality in zebrafish larvae with an EC50 of 7.8 µM and LC50 of 12 µM. Acetochlor exposure at 10 nM resulted in lipid accumulation in zebrafish larvae when simultaneously fed a high cholesterol diet. To decipher the molecular mechanisms behind acetochlor action, we preformed transcriptomic and lipidomic analysis of exposed animals. The combined omics results suggested that acetochlor exposure increased Nrf2 activity in response to reactive oxygen species, as well as induced lipid peroxidation and ferroptosis. We further discovered that acetochlor structurally shares a chloroacetamide group with known inhibitors of glutathione peroxidase 4 (GPX4). Computational docking analysis suggested that acetochlor covalently binds to the active site of GPX4. Consistent with this prediction, Gpx activity was efficiently repressed by acetochlor in zebrafish, whereas lipid peroxidation was increased. We propose that acetochlor disrupts lipid homeostasis by inhibiting Gpx activity, resulting in accumulation of lipid peroxidation, 4-hydroxynonenal, and reactive oxygen species, which in turn activate Nrf2. Because metolachlor, among other acetanilide herbicides, also contain the chloroacetamide group, inhibition of Gpx activity may represent a novel, common molecular initiating event of metabolic disruption.

2.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38854095

RESUMEN

BACKGROUND: The insecticide tefluthrin is widely used in agriculture, resulting in widespread pollution. Tefluthrin is a type I pyrethroid characterized by its high persistence in the environment. Understanding the mechanisms of toxicity of tefluthrin will improve its risk assessment. OBJECTIVES: We aimed to decipher the molecular modes of action of tefluthrin. METHODS: Phenotypic developmental toxicity was assessed by exposing zebrafish embryos and larvae to increasing concentrations of tefluthrin. Tg(mnx:mGFP) line was used to assess neurotoxicity. Multi-omics approaches including transcriptomics and lipidomics were applied to analyze RNA and lipid contents, respectively. Finally, an in-silico ligand-protein docking computational method was used to study a possible interaction between tefluthrin and a protein target. RESULTS: Tefluthrin exposure caused severe morphological malformations in zebrafish larvae, including motor neuron abnormalities. The differentially expressed genes were associated with neurotoxicity and metabolic disruption. Lipidomics analysis revealed a disruption in fatty acid, phospholipid, and lysophospholipid recycling. Protein docking modeling suggested that the LPCAT3 enzyme, which recycles lysophospholipids in the Land's cycle, directly interacts with tefluthrin. CONCLUSIONS: Tefluthrin exposure causes morphological and neuronal malformations in zebrafish larvae at nanomolar concentrations. Multi-omics results revealed a potential molecular initiating event i.e., inhibition of LPCAT3, and key events i.e., an altered lysophospholipid to phospholipid ratio, leading to the adverse outcomes of neurotoxicity and metabolic disruption.

3.
Toxicol Sci ; 193(2): 119-130, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36951524

RESUMEN

Triazoles are a major group of azole fungicides commonly used in agriculture, and veterinary and human medicine. Maternal exposure to certain triazole antifungal medication causes congenital malformations, including skeletal malformations. We hypothesized that triazoles used as pesticides in agriculture also pose a risk of causing skeletal malformations in developing embryos. In this study, teratogenic effects of three commonly used triazoles, cyproconazole, paclobutrazol, and triadimenol, were investigated in zebrafish, Danio rerio. Exposure to the triazole fungicides caused bone and cartilage malformations in developing zebrafish larvae. Data from whole-embryo transcriptomics with cyproconazole suggested that exposure to this compound induces adipogenesis while repressing skeletal development. Confirming this finding, the expression of selected bone and cartilage marker genes were significantly downregulated with triazoles exposure as determined by quantitative PCR. The expression of selected adipogenic genes was upregulated by the triazoles. Furthermore, exposure to each of the three triazoles induced adipogenesis and lipid droplet formation in vitro in 3T3-L1 pre-adipocyte cells. In vivo in zebrafish larvae, cyproconazole exposure caused lipid accumulation. These results suggest that exposure to triazoles promotes adipogenesis at the expense of skeletal development, and thus they expand the chemical group of bona fide bone to fat switchers.


Asunto(s)
Fungicidas Industriales , Pez Cebra , Animales , Femenino , Humanos , Pez Cebra/metabolismo , Fungicidas Industriales/toxicidad , Fungicidas Industriales/metabolismo , Adipogénesis , Antifúngicos , Triazoles/toxicidad , Triazoles/metabolismo
4.
Epilepsia ; 62(7): 1689-1700, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33997963

RESUMEN

OBJECTIVE: Fetal exposure to the anticonvulsant drug valproic acid (VPA), used to treat certain types of epilepsy, increases the risk for birth defects, including neural tube defects, as well as learning difficulties and behavioral problems. Here, we investigated neurotoxic effects of VPA exposure using zebrafish as a model organism. The capacity of folic acid (FA) supplementation to rescue the VPA-induced neuronal and behavioral perturbations was also examined. METHODS: Zebrafish embryos of different transgenic lines with neuronal green fluorescent protein expression were exposed to increasing concentrations of VPA with or without FA supplementation. Fluorescence microscopy was used to visualize alterations in brain structures and neural progenitor cells, as well as motor neurons and neurite sprouting. A twitching behavioral assay was used to examine the functional consequences of VPA and FA treatment. RESULTS: In zebrafish embryos, VPA exposure caused a decrease in the midbrain size, an increase in the midline gap of the hindbrain, and perturbed neurite sprouting of secondary motor neurons, in a concentration-dependent manner. VPA exposure also decreased the fluorescence intensity of neuronal progenitor cells in early developmental stages, indicating fewer cells. Furthermore, VPA exposure significantly altered embryonic twitching activity, causing hyperactivity in dark and hypoactivity in light. Supplementation of FA rescued the VPA-induced smaller midbrain size and hindbrain midline gap defects. FA treatment also increased the number of neuronal progenitor cells in VPA-treated embryos and salvaged neurite sprouting of the secondary motor neurons. FA rescued the VPA-induced alterations in twitching activity in light but not in dark. SIGNIFICANCE: We conclude that VPA exposure induces specific neurotoxic perturbations in developing zebrafish embryos, and that FA reversed most of the identified defects. The results demonstrate that zebrafish is a promising model to study VPA-induced teratogenesis and to screen for countermeasures.


Asunto(s)
Anticonvulsivantes/toxicidad , Conducta Animal/efectos de los fármacos , Ácido Fólico/uso terapéutico , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/psicología , Ácido Valproico/toxicidad , Vitaminas/uso terapéutico , Pez Cebra , Animales , Animales Modificados Genéticamente , Suplementos Dietéticos , Desarrollo Embrionario/efectos de los fármacos , Larva , Iluminación , Mesencéfalo/anatomía & histología , Mesencéfalo/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Defectos del Tubo Neural/inducido químicamente , Neuritas/efectos de los fármacos , Rombencéfalo/anatomía & histología , Rombencéfalo/efectos de los fármacos , Ácido Valproico/antagonistas & inhibidores
5.
ACS Appl Bio Mater ; 3(9): 6273-6283, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021758

RESUMEN

Breast cancer is a highly complex, heterogeneous, and multifactorial disease that poses challenges for rapid and efficient treatment and development of personalized therapy. Here, we describe a rapid and reliable method to generate three-dimensional (3D) tumor spheroids in vitro that recapitulate an individual patient's tumor for testing treatments. By employing droplet microfluidics and scaffold materials, tumor cells were encapsulated into a large number of Matrigel-in-oil droplets with precise control over cell numbers and components per droplet. After removal of the oil, large numbers of uniform tumor spheroids were formed within a few hours via Matrigel-supported cell self-assembly. Our microfluidic technique produces uniform-sized tumor spheroids in less than 1 day. This method was used to reproducibly and rapidly generate uniform-sized tumor spheroids derived from patients' breast tumor tissues. As a proof-of-concept application, this method was used to quickly evaluate cancer treatments. We demonstrated that our microfluidic patient-derived tumor cultures not only preserve the genetic characteristics of the original tumor tissue but also provide heterogeneous responses to targeted therapies within 2 days. We believe this method will enable a timely and reliable 3D in vitro culture model, which may be applicable to personalized treatment prediction, drug discovery, and toxicity testing.

6.
Nanotechnology ; 29(50): 504006, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30264735

RESUMEN

Multicellular spheroids represent a promising approach to mimic 3D tissues in vivo for emerging applications in regenerative medicine, therapeutic screening, and drug discovery. Conventional spheroid fabrication methods, such as the hanging drop method, suffer from low-throughput, long time, complicated procedure, and high heterogeneity in spheroid size. In this work, we report a simple yet reliable acoustic method to rapidly assemble cell spheroids in capillaries in a replicable and scalable manner. Briefly, by introducing a coupled standing surface acoustic wave, we are able to generate a linear pressure node array with 300 trapping nodes simultaneously. This enables us to continuously fabricate spheroids in a high-throughput manner with minimal variability in spheroid size. In a proof of concept application, we fabricated cell spheroids of mouse embryonic carcinoma (P19) cells, which grew well and retained differentiation potential in vitro. Based on the advantages of the non-invasive, contactless and label-free acoustic cell manipulation, our method employs the coupling strategy to assemble cells in capillaries, and further advances 3D spheroid assembly technology in an easy, cost-efficient, consistent, and high-throughput manner. This method could further be adapted into a novel 3D biofabrication approach to replicate compilated tissues and organs for a wide set of biomedical applications.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Sonido , Esferoides Celulares/citología , Acústica/instrumentación , Animales , Supervivencia Celular , Diseño de Equipo , Ratones , Micromanipulación/instrumentación , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...