Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 624(7991): 355-365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092919

RESUMEN

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Asunto(s)
Encéfalo , Epigenómica , Vías Nerviosas , Neuronas , Animales , Ratones , Amígdala del Cerebelo , Encéfalo/citología , Encéfalo/metabolismo , Secuencia de Consenso , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Hipotálamo/citología , Mesencéfalo/citología , Vías Nerviosas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Rombencéfalo/citología , Análisis de la Célula Individual , Tálamo/citología , Factores de Transcripción/metabolismo
2.
Res Sq ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106071

RESUMEN

INTRODUCTION: The R47H missense mutation of the TREM2 gene is a strong risk factor for development of Alzheimer's Disease. We investigate cell-type-specific spatial transcriptomic changes induced by the Trem2R47H mutation to determine the impacts of this mutation on transcriptional dysregulation. METHODS: We profiled 15 mouse brain sections consisting of wild-type, Trem2R47H, 5xFAD and Trem2R47H; 5xFAD genotypes using MERFISH spatial transcriptomics. Single-cell spatial transcriptomics and neuropathology data were analyzed using our custom pipeline to identify plaque and Trem2R47H induced transcriptomic dysregulation. RESULTS: The Trem2R47H mutation induced consistent upregulation of Bdnf and Ntrk2 across many cortical excitatory neuron types, independent of amyloid pathology. Spatial investigation of genotype enriched subclusters identified spatially localized neuronal subpopulations reduced in 5xFAD and Trem2R47H; 5xFAD mice. CONCLUSION: Spatial transcriptomics analysis identifies glial and neuronal transcriptomic alterations induced independently by 5xFAD and Trem2R47H mutations, impacting inflammatory responses in microglia and astrocytes, and activity and BDNF signaling in neurons.

3.
Nat Commun ; 14(1): 5714, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714849

RESUMEN

A repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we investigate single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem motor and frontal cortices from C9-ALS, C9-FTD, and control donors. C9-ALS donors present pervasive alterations of gene expression with concordant changes in chromatin accessibility and histone modifications. The greatest alterations occur in upper and deep layer excitatory neurons, as well as in astrocytes. In neurons, the changes imply an increase in proteostasis, metabolism, and protein expression pathways, alongside a decrease in neuronal function. In astrocytes, the alterations suggest activation and structural remodeling. Conversely, C9-FTD donors have fewer high-quality neuronal nuclei in the frontal cortex and numerous gene expression changes in glial cells. These findings highlight a context-dependent molecular disruption in C9-ALS and C9-FTD, indicating unique effects across cell types, brain regions, and diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Transcriptoma/genética , Epigenoma , Mutación
4.
Cell Genom ; 3(7): 100342, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37492103

RESUMEN

Single-cell sequencing could help to solve the fundamental challenge of linking millions of cell-type-specific enhancers with their target genes. However, this task is confounded by patterns of gene co-expression in much the same way that genetic correlation due to linkage disequilibrium confounds fine-mapping in genome-wide association studies (GWAS). We developed a non-parametric permutation-based procedure to establish stringent statistical criteria to control the risk of false-positive associations in enhancer-gene association studies (EGAS). We applied our procedure to large-scale transcriptome and epigenome data from multiple tissues and species, including the mouse and human brain, to predict enhancer-gene associations genome wide. We tested the functional validity of our predictions by comparing them with chromatin conformation data and causal enhancer perturbation experiments. Our study shows how controlling for gene co-expression enables robust enhancer-gene linkage using single-cell sequencing data.

5.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187559

RESUMEN

Somatic mutations alter the genomes of a subset of an individual's brain cells1-3, impacting gene regulation and contributing to disease processes4,5. Mosaic single nucleotide variants have been characterized with single-cell resolution in the brain2,3, but we have limited information about large-scale structural variation, including whole-chromosome duplication or loss1,6,7. We used a dataset of over 415,000 single-cell DNA methylation and chromatin conformation profiles across the adult mouse brain to identify aneuploid cells comprehensively. Whole-chromosome loss or duplication occurred in <1% of cells, with rates up to 1.8% in non-neuronal cell types, including oligodendrocyte precursors and pericytes. Among all aneuploidies, we observed a strong enrichment of trisomy on chromosome 16, which is syntenic with human chromosome 21 and constitutively trisomic in Down syndrome. Chromosome 16 trisomy occurred in multiple cell types and across brain regions, suggesting that nondisjunction is a recurrent feature of somatic variation in the brain.

6.
Elife ; 112022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35604009

RESUMEN

Two epigenetic pathways of transcriptional repression, DNA methylation and polycomb repressive complex 2 (PRC2), are known to regulate neuronal development and function. However, their respective contributions to brain maturation are unknown. We found that conditional loss of the de novo DNA methyltransferase Dnmt3a in mouse excitatory neurons altered expression of synapse-related genes, stunted synapse maturation, and impaired working memory and social interest. At the genomic level, loss of Dnmt3a abolished postnatal accumulation of CG and non-CG DNA methylation, leaving adult neurons with an unmethylated, fetal-like epigenomic pattern at ~222,000 genomic regions. The PRC2-associated histone modification, H3K27me3, increased at many of these sites. Our data support a dynamic interaction between two fundamental modes of epigenetic repression during postnatal maturation of excitatory neurons, which together confer robustness on neuronal regulation.


Asunto(s)
ADN Metiltransferasa 3A , Código de Histonas , Neuronas , Sinapsis , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/fisiopatología , ADN Metiltransferasa 3A/genética , ADN Metiltransferasa 3A/metabolismo , Modelos Animales de Enfermedad , Código de Histonas/genética , Código de Histonas/fisiología , Histonas/genética , Histonas/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
7.
Nat Commun ; 13(1): 2997, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637184

RESUMEN

Posttranscriptional adenosine-to-inosine modifications amplify the functionality of RNA molecules in the brain, yet the cellular and genetic regulation of RNA editing is poorly described. We quantify base-specific RNA editing across three major cell populations from the human prefrontal cortex: glutamatergic neurons, medial ganglionic eminence-derived GABAergic neurons, and oligodendrocytes. We identify more selective editing and hyper-editing in neurons relative to oligodendrocytes. RNA editing patterns are highly cell type-specific, with 189,229 cell type-associated sites. The cellular specificity for thousands of sites is confirmed by single nucleus RNA-sequencing. Importantly, cell type-associated sites are enriched in GTEx RNA-sequencing data, edited ~twentyfold higher than all other sites, and variation in RNA editing is largely explained by neuronal proportions in bulk brain tissue. Finally, we uncover 661,791 cis-editing quantitative trait loci across thirteen brain regions, including hundreds with cell type-associated features. These data reveal an expansive repertoire of highly regulated RNA editing sites across human brain cell types and provide a resolved atlas linking cell types to editing variation and genetic regulatory effects.


Asunto(s)
Inosina , Edición de ARN , Encéfalo/metabolismo , Humanos , Inosina/genética , Inosina/metabolismo , Sitios de Carácter Cuantitativo/genética , ARN/metabolismo , Edición de ARN/genética
8.
Cell Genom ; 2(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35419551

RESUMEN

Single-cell technologies measure unique cellular signatures but are typically limited to a single modality. Computational approaches allow the fusion of diverse single-cell data types, but their efficacy is difficult to validate in the absence of authentic multi-omic measurements. To comprehensively assess the molecular phenotypes of single cells, we devised single-nucleus methylcytosine, chromatin accessibility, and transcriptome sequencing (snmCAT-seq) and applied it to postmortem human frontal cortex tissue. We developed a cross-validation approach using multi-modal information to validate fine-grained cell types and assessed the effectiveness of computational data fusion methods. Correlation analysis in individual cells revealed distinct relations between methylation and gene expression. Our integrative approach enabled joint analyses of the methylome, transcriptome, chromatin accessibility, and conformation for 63 human cortical cell types. We reconstructed regulatory lineages for cortical cell populations and found specific enrichment of genetic risk for neuropsychiatric traits, enabling the prediction of cell types that are associated with diseases.

10.
Nature ; 598(7879): 120-128, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616061

RESUMEN

Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.


Asunto(s)
Encéfalo/citología , Metilación de ADN , Epigenoma , Epigenómica , Neuronas/clasificación , Neuronas/metabolismo , Análisis de la Célula Individual , Animales , Atlas como Asunto , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/química , Citosina/metabolismo , Conjuntos de Datos como Asunto , Giro Dentado/citología , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Vías Nerviosas , Neuronas/citología
11.
Nature ; 598(7879): 167-173, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616065

RESUMEN

Neuronal cell types are classically defined by their molecular properties, anatomy and functions. Although recent advances in single-cell genomics have led to high-resolution molecular characterization of cell type diversity in the brain1, neuronal cell types are often studied out of the context of their anatomical properties. To improve our understanding of the relationship between molecular and anatomical features that define cortical neurons, here we combined retrograde labelling with single-nucleus DNA methylation sequencing to link neural epigenomic properties to projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical and cortico-subcortical long-distance projections. Our results showed unique epigenetic signatures of projection neurons that correspond to their laminar and regional location and projection patterns. On the basis of their epigenomes, intra-telencephalic cells that project to different cortical targets could be further distinguished, and some layer 5 neurons that project to extra-telencephalic targets (L5 ET) formed separate clusters that aligned with their axonal projections. Such separation varied between cortical areas, which suggests that there are area-specific differences in L5 ET subtypes, which were further validated by anatomical studies. Notably, a population of cortico-cortical projection neurons clustered with L5 ET rather than intra-telencephalic neurons, which suggests that a population of L5 ET cortical neurons projects to both targets. We verified the existence of these neurons by dual retrograde labelling and anterograde tracing of cortico-cortical projection neurons, which revealed axon terminals in extra-telencephalic targets including the thalamus, superior colliculus and pons. These findings highlight the power of single-cell epigenomic approaches to connect the molecular properties of neurons with their anatomical and projection properties.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Epigenoma , Epigenómica , Vías Nerviosas , Neuronas/clasificación , Neuronas/metabolismo , Animales , Mapeo Encefálico , Femenino , Masculino , Ratones , Neuronas/citología
12.
Nature ; 598(7879): 129-136, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616068

RESUMEN

The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures1. Recent surveys of mouse and human brains with single-cell transcriptomics2-6 and high-throughput imaging technologies7,8 have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.


Asunto(s)
Cerebro/citología , Cerebro/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Atlas como Asunto , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/genética , Neuroglía/clasificación , Neuroglía/metabolismo , Neuronas/clasificación , Neuronas/metabolismo , Análisis de Secuencia de ADN , Análisis de la Célula Individual
13.
Nat Commun ; 12(1): 1337, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637727

RESUMEN

Identification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Análisis de la Célula Individual/métodos , Animales , Cromatina , Biología Computacional , Epigenómica , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Motora , Análisis de Secuencia de ADN/métodos
14.
Neuron ; 109(1): 11-26, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33412093

RESUMEN

Single-cell sequencing technologies, including transcriptomic and epigenomic assays, are transforming our understanding of the cellular building blocks of neural circuits. By directly measuring multiple molecular signatures in thousands to millions of individual cells, single-cell sequencing methods can comprehensively characterize the diversity of brain cell types. These measurements uncover gene regulatory mechanisms that shape cellular identity and provide insight into developmental and evolutionary relationships between brain cell populations. Single-cell sequencing data can aid the design of tools for targeted functional studies of brain circuit components, linking molecular signatures with anatomy, connectivity, morphology, and physiology. Here, we discuss the fundamental principles of single-cell transcriptome and epigenome sequencing, integrative computational analysis of the data, and key applications in neuroscience.


Asunto(s)
Encéfalo/metabolismo , Epigenoma/fisiología , Análisis de la Célula Individual/métodos , Transcriptoma/fisiología , Metilación de ADN/fisiología , Epigenómica/métodos , Humanos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos
15.
Proc Natl Acad Sci U S A ; 117(45): 28422-28432, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33109720

RESUMEN

The human cerebral cortex contains many cell types that likely underwent independent functional changes during evolution. However, cell-type-specific regulatory landscapes in the cortex remain largely unexplored. Here we report epigenomic and transcriptomic analyses of the two main cortical neuronal subtypes, glutamatergic projection neurons and GABAergic interneurons, in human, chimpanzee, and rhesus macaque. Using genome-wide profiling of the H3K27ac histone modification, we identify neuron-subtype-specific regulatory elements that previously went undetected in bulk brain tissue samples. Human-specific regulatory changes are uncovered in multiple genes, including those associated with language, autism spectrum disorder, and drug addiction. We observe preferential evolutionary divergence in neuron subtype-specific regulatory elements and show that a substantial fraction of pan-neuronal regulatory elements undergoes subtype-specific evolutionary changes. This study sheds light on the interplay between regulatory evolution and cell-type-dependent gene-expression programs, and provides a resource for further exploration of human brain evolution and function.


Asunto(s)
Corteza Cerebral/metabolismo , Evolución Molecular , Neuronas/metabolismo , Animales , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Epigénesis Genética , Epigenómica , Expresión Génica , Código de Histonas , Humanos , Interneuronas/metabolismo , Macaca mulatta/genética , Pan troglodytes/genética , Primates/genética , Elementos Reguladores de la Transcripción , Secuencias Reguladoras de Ácidos Nucleicos , Transcriptoma
16.
Neurobiol Dis ; 125: 211-218, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30716470

RESUMEN

BACKGROUND: Epidemiological studies suggest that the risk of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia is increased by prenatal exposure to viral or bacterial infection during pregnancy. It is still unclear how activation of the maternal immune response interacts with underlying genetic factors to influence observed ASD phenotypes. METHODS: The current study investigated how maternal immune activation (MIA) in mice impacts gene expression in the frontal cortex in adulthood, and how these molecular changes relate to deficits in cognitive flexibility and social behavior, and increases in repetitive behavior that are prevalent in ASD. Poly(I:C) (20 mg/kg) was administered to dams on E12.5 and offspring were tested for social approach behavior, repetitive grooming, and probabilistic reversal learning in adulthood (n = 8 vehicle; n = 9 Poly(I:C)). We employed next-generation high-throughput mRNA sequencing (RNA-seq) to comprehensively investigate the transcriptome profile in frontal cortex of adult offspring of Poly(I:C)-exposed dams. RESULTS: Exposure to poly(I:C) during gestation impaired probabilistic reversal learning and decreased social approach in MIA offspring compared to controls. We found long-term effects of MIA on expression of 24 genes, including genes involved in glutamatergic neurotransmission, mTOR signaling and potassium ion channel activity. Correlations between gene expression and specific behavioral measures provided insight into genes that may be responsible for ASD-like behavioral alterations. CONCLUSIONS: These findings suggest that MIA can lead to impairments in cognitive flexibility in mice similar to those exhibited in ASD individuals, and that these impairments are associated with altered gene expression in frontal cortex.


Asunto(s)
Lóbulo Frontal/inmunología , Trastornos del Neurodesarrollo/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Transcripción Genética/inmunología , Animales , Conducta Animal/fisiología , Cognición/fisiología , Femenino , Lóbulo Frontal/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Conducta Social
17.
Curr Opin Neurobiol ; 56: 61-68, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30530112

RESUMEN

The diversity of brain cell types was one of the earliest observations in modern neuroscience and continues to be one of the central concerns of current neuroscience research. Despite impressive recent progress, including single cell transcriptome and epigenome profiling as well as anatomical methods, we still lack a complete census or taxonomy of brain cell types. We argue this is due partly to the conceptual difficulty in defining a cell type. By considering the biological drivers of cell identity, such as networks of genes and gene regulatory elements, we propose a definition of cell type that emphasizes self-stabilizing regulation. We explore the predictions and hypotheses that arise from this definition. Integration of data from multiple modalities, including molecular profiling of genes and gene products, epigenetic landscape, cellular morphology, connectivity, and physiology, will be essential for a meaningful and broadly useful definition of brain cell types.


Asunto(s)
Encéfalo , Neurociencias , Transcriptoma , Epigenómica , Perfilación de la Expresión Génica
18.
Sci Adv ; 4(9): eaau6190, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30263963

RESUMEN

Brain function depends on interaction of diverse cell types whose gene expression and identity are defined, in part, by epigenetic mechanisms. Neuronal DNA contains two major epigenetic modifications, methylcytosine (mC) and hydroxymethylcytosine (hmC), yet their cell type-specific landscapes and relationship with gene expression are poorly understood. We report high-resolution (h)mC analyses, together with transcriptome and histone modification profiling, in three major cell types in human prefrontal cortex: glutamatergic excitatory neurons, medial ganglionic eminence-derived γ-aminobutyric acid (GABA)ergic inhibitory neurons, and oligodendrocytes. We detected a unique association between hmC and gene expression in inhibitory neurons that differed significantly from the pattern in excitatory neurons and oligodendrocytes. We also found that risk loci associated with neuropsychiatric diseases were enriched near regions of reduced hmC in excitatory neurons and reduced mC in inhibitory neurons. Our findings indicate differential roles for mC and hmC in regulation of gene expression in different brain cell types, with implications for the etiology of human brain diseases.


Asunto(s)
Encefalopatías/genética , Encéfalo/metabolismo , Metilación de ADN , Epigénesis Genética , Inhibición Neural/fisiología , Neuronas/metabolismo , Adulto , Encéfalo/patología , Encefalopatías/fisiopatología , Cadáver , Núcleo Celular/genética , Humanos , Masculino , Neuronas/patología , Polimorfismo de Nucleótido Simple
19.
Elife ; 72018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30095069

RESUMEN

During awake consciousness, the brain intrinsically maintains a dynamical state in which it can coordinate complex responses to sensory input. How the brain reaches this state spontaneously is not known. General anesthesia provides a unique opportunity to examine how the human brain recovers its functional capabilities after profound unconsciousness. We used intracranial electrocorticography and scalp EEG in humans to track neural dynamics during emergence from propofol general anesthesia. We identify a distinct transient brain state that occurs immediately prior to recovery of behavioral responsiveness. This state is characterized by large, spatially distributed, slow sensory-evoked potentials that resemble the K-complexes that are hallmarks of stage two sleep. However, the ongoing spontaneous dynamics in this transitional state differ from sleep. These results identify an asymmetry in the neurophysiology of induction and emergence, as the emerging brain can enter a state with a sleep-like sensory blockade before regaining responsivity to arousing stimuli.


Asunto(s)
Periodo de Recuperación de la Anestesia , Corteza Cerebral/fisiología , Estado de Conciencia/fisiología , Propofol/administración & dosificación , Sueño/fisiología , Adulto , Corteza Cerebral/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Electroencefalografía , Potenciales Evocados , Femenino , Humanos , Hipnóticos y Sedantes/farmacología , Masculino , Persona de Mediana Edad , Sensación/efectos de los fármacos , Adulto Joven
20.
Nat Commun ; 9(1): 298, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352183

RESUMEN

Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.


Asunto(s)
Condicionamiento Psicológico/fisiología , Giro Dentado/metabolismo , Epigénesis Genética , Interacción Gen-Ambiente , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Transcriptoma , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , ADN/genética , ADN/metabolismo , Metilación de ADN , Giro Dentado/anatomía & histología , Giro Dentado/diagnóstico por imagen , Giro Dentado/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/fisiología , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA