Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomed Mater ; 19(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38181448

RESUMEN

Antimicrobial wound dressings play a crucial role in treatment of wound infections. However, existing commercial options fall short due to antibiotic resistance and the limited spectrum of activity of newly emerging antimicrobials against bacteria that are frequently encountered in wound infections. Antimicrobial photodynamic therapy (aPDT) is very promising alternative therapeutic approach against antibiotic resistant microbes such as methicillin resistantStaphylococcus aureus (MRSA). However, delivery of the photosensitizer (PS) homogeneously to the wound site is a challenge. Though polymeric wound dressings based on synthetic and biopolymers are being explored for aPDT, there is paucity of data regarding theirin vivoefficacy. Moreover, there are no studies on use of PS loaded, pluoronic (PL) and pectin (PC) based films for aPDT. We report development of a polymeric film for potential use in aPDT. The film was prepared using PL and PC via solvent casting approach and impregnated with methylene blue (MB) for photodynamic inactivation of MRSAin vitroandin vivo. Atomic force microscopic imaging of the films yielded vivid pictures of surface topography, with rough surfaces, pores, and furrows. The PL:PC ratio (2:3) was optimized that would result in an intact film but exhibit rapid release of MB in time scale suitable for aPDT. The film showed good antibacterial activity against planktonic suspension, biofilm of MRSA upon exposure to red light. Investigations on MRSA infected excisional wounds of mice reveal that topical application of MB loaded film for 30 min followed by red light exposure for 5 min (fluence; ∼30 J cm-2) or 10 min (fluence; ∼60 J cm-2) reduces ∼80% or ∼92% of bioburden, respectively. Importantly, the film elicits no significant cytotoxicity against keratinocytes and human adipose derived mesenchymal stem cells. Taken together, our data demonstrate that PS-loaded PL-PC based films are a promising new tool for treatment of MRSA infected wounds.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infección de Heridas , Animales , Ratones , Humanos , Meticilina/uso terapéutico , Poloxámero/uso terapéutico , Azul de Metileno/uso terapéutico , Pectinas/uso terapéutico , Fármacos Fotosensibilizantes , Antibacterianos , Polímeros , Biopelículas , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología
2.
ACS Chem Neurosci ; 14(13): 2450-2460, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37290090

RESUMEN

Epstein-Barr virus (EBV) is known to be associated with several cancers along with neurological modalities like Alzheimer's disease (AD) and multiple sclerosis (MS). Previous study from our group revealed that a 12 amino acid peptide fragment (146SYKHVFLSAFVY157) of EBV glycoprotein M (gM) exhibits amyloid-like self-aggregative properties. In the current study, we have investigated its effect on Aß42 aggregation along with its effect on neural cell immunology and disease markers. EBV virion was also considered for the above-mentioned investigation. An increase in the aggregation of Aß42 peptide was observed upon incubation with gM146-157. Further, the exposure of EBV and gM146-157 onto neuronal cells indicated the upregulation of inflammatory molecules like IL-1ß, IL-6, TNF-α, and TGF-ß that suggested neuroinflammation. Besides, host cell factors like mitochondrial potential and calcium ion signaling play a crucial role in cellular homeostasis and alterations in these factors aid in neurodegeneration. Changes in mitochondrial membrane potential manifested a decrease while elevation in the level of total Ca2+ ions was observed. Amelioration of Ca2+ ions triggers excitotoxicity in neurons. Subsequently, neurological disease-associated genes APP, ApoE4, and MBP were found to be increased at the protein level. Additionally, demyelination of neurons is a hallmark of MS and the myelin sheath consists of ∼70% of lipid/cholesterol-associated moieties. Hereby, genes associated with cholesterol metabolism indicated changes at the mRNA level. Enhanced expression of neurotropic factors like NGF and BDNF was discerned postexposure to EBV and gM146-157. Altogether, this study delineates a direct connection of EBV and its peptide gM146-157 with neurological illnesses.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Humanos , Herpesvirus Humano 4/fisiología , Infecciones por Virus de Epstein-Barr/complicaciones , Péptidos , Glicoproteínas
3.
J Synchrotron Radiat ; 29(Pt 4): 978-984, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787563

RESUMEN

Boron carbide is a prominent material for high-brilliance synchrotron optics as it remains stable up to very high temperatures. The present study shows a significant change taking place at 550°C in the buried interface region formed between the Cr adhesive layer and the native oxide layer present on the silicon substrate. An in situ annealing study is carried out at the Indus-1 Reflectivity beamline from room temperature to 550°C (100°C steps). The studied sample is a mirror-like boron carbide thin film of 400 Šthickness deposited with an adhesive layer of 20 ŠCr on a silicon substrate. The corresponding changes in the film structure are recorded using angle-dependent soft X-ray reflectivity measurements carried out in the region of the boron K-edge after each annealing temperature. Analyses performed using the Parratt recursive formalism reveal that the top boron carbide layer remains intact but interface reactions take place in the buried Cr-SiO2 region. After 300°C the Cr layer diffuses towards the substrate. At higher temperatures of 500°C and 550°C the Cr reacts with the native oxide layer and tends to form a low-density compound of chromium oxysilicide (CrSiOx). Depth profiling of Si and Cr distributions obtained from secondary ion mass spectroscopy measurements corroborate the layer model obtained from the soft X-ray reflectivity analyses. Details of the interface reaction taking place near the substrate region of boron carbide/Cr sample are discussed.

4.
J Biophotonics ; 12(5): e201800246, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30666814

RESUMEN

Simultaneous photoreduction and Raman spectroscopy with 532 nm laser has been used to study the effects of organophosphate (chlorpyrifos [CPF]) exposure on human red blood cells (RBCs). Since in RBCs, auto-oxidation causes oxidative stress, which, in turn, is balanced by the cellular detoxicants, any possible negative effect of CPF on this balance should results in an increased level of damaged (permanently oxygenated) hemoglobin. Therefore, when 532 nm laser, at a suitable power, was applied to photoreduce the cells, only common oxygenated form of hemoglobin got photoreduced leaving the permanently oxygenated hemoglobin detectable in the Raman spectra simultaneously excited by the same laser. Using the technique effects of CPF to build up oxidative stress on RBCs could be detected at concentrations as low as 10 ppb from a comparison of relative strengths of different Raman bands. Experiments performed using simultaneously exposing the cells, along with CPF, to H2 O2 (oxidative agent) and/or 3-Aminotriazole (inhibitor of anti-oxidant catalase), suggested role of CPF to suppress the cellular anti-oxidant mechanism. Since the high level of damaged hemoglobin produced by the action of CPF (at concentrations >100 ppm) is expected to cause membrane damage, atomic force microscopy (AFM) was used to identify such damages.Upper panel: Raman spectra of normal, photoreduced CPF exposed and unexposed RBCs. Lower panel: The weak Fe-O2 Raman band for CPF exposed cells shown on the left. The AFM images of unexposed and exposed cells are shown on the right. Scale bar, 2.5 µm.


Asunto(s)
Cloropirifos/toxicidad , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Procesos Fotoquímicos/efectos de los fármacos , Espectrometría Raman , Humanos
5.
Appl Opt ; 51(30): 7402-10, 2012 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-23089798

RESUMEN

The optical constants of sapphire crystal (α-Al(2)O(3)) and amorphous Al(2)O(3) in the soft x-ray region (67-85 eV) around the aluminum LII,III absorption edge (73.1 eV) are determined by angle-dependent x-ray reflectivity. The differences between the optical constant values of both the samples are discussed. The fine structures obtained in the absorption of crystalline sapphire are explained. An absorption feature at 70.2 eV is observed for the first time for crystalline alumina. Both datasets are compared to the tabulated values of Henke et al. [At. Data Nucl. Data Tables 54, 181 (1993)], Weaver et al. [Physik Daten, Physics Data: Optical Properties of Metals (Fach-information zentrum, 1981), Vols. 18-1 and 18-2], and [Handbook of Optical Constants of Solids II (Academic, 1991)].

6.
J Photochem Photobiol B ; 96(1): 9-16, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19423358

RESUMEN

Topographical alterations induced by Toluidine Blue O (TBO) mediated photodynamic treatment in Staphylococcus aureus and Escherichia coli was studied using atomic force microscopy (AFM). The AFM images showed distinct differences in the effect of photodynamic treatment on the morphology of S. aureus and E. coli. In S. aureus, photodynamic treatment with TBO resulted in light dose dependent increase in surface bleb formation suggesting breakage in the contact between the cell wall and the membrane with no significant change in the cell dimensions. Photosensitization of E. coli, resulted in surface indentations, significant reduction in the mean cell height, and flattening of bacteria as compared to the bacteria treated with the photosensitizers in the dark. These results indicate damage to the bacterial membrane and reduction of cell volume due to the loss of cytoplasmic materials. Leakage of intracellular contents measured using absorption spectrophotometry was higher and occurred faster in E. coli as compared to S. aureus and correlated with the morphological alterations. The results suggest that with AFM imaging it is possible to distinguish the membranolytic action of TBO in Gram-positive and Gram-negative bacteria.


Asunto(s)
Colorantes/farmacología , Escherichia coli/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Staphylococcus aureus/efectos de los fármacos , Cloruro de Tolonio/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Colorantes/química , Escherichia coli/efectos de la radiación , Escherichia coli/ultraestructura , Luz , Microscopía de Fuerza Atómica , Fármacos Fotosensibilizantes/química , Staphylococcus aureus/efectos de la radiación , Staphylococcus aureus/ultraestructura , Cloruro de Tolonio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA