Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10406, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710736

RESUMEN

Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 µg/l and 10 µg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.


Asunto(s)
Antibacterianos , Antineoplásicos , Nanoestructuras , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Catálisis , Antineoplásicos/farmacología , Antineoplásicos/química , Nanoestructuras/química , Escherichia coli/efectos de los fármacos , Ciprofloxacina/farmacología , Ciprofloxacina/química , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Línea Celular Tumoral , Procesos Fotoquímicos , Fotólisis
2.
ACS Appl Mater Interfaces ; 9(23): 19446-19454, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28610426

RESUMEN

Organic materials containing active carbonyl groups have attracted considerable attention as electrodes in Li-ion batteries due to their reversible redox activity, ability to retain capacity, and, in addition, their ecofriendly nature. Introduction of porosity will help accommodate as well as store small ions and molecules reversibly. In the present work, we introduce a mesoporous triptycene-related, rigid network polymer with high specific surface area as an electrode material for rechargeable Li-ion battery. The designed polymer with a three-dimensional (3D), rigid porous network allows free movement of ions/electrolyte as well as helps in interacting with the active anhydride moieties (containing two carbonyl groups). Considerable intake of Li+ ions giving rise to very high specific capacity of 1100 mA h g-1 at a discharge current of 50 mA g-1 and ∼120 mA h g-1 at a high discharge current of 3 A g-1 are observed with excellent cyclability up to 1000 cycles. This remarkable rate capability, which is one of the highest among the reported organic porous polymers to date, makes the triptycene-related rigid 3D network a very good choice for Li-ion batteries and opens up a new method to design polymer-based electrode materials for metal-ion battery technology.

3.
J Phys Chem A ; 120(36): 7121-9, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27537491

RESUMEN

Sodium titanate nanosheets (NaTiO2 NS) have been prepared by a new method and completely characterized by TEM, SEM, XRD, EDX, and XPS techniques. The sensitization of nanosheets is carried out with Zn protoporphyrin IX (ZnPPIX). The emission intensity of ZnPPIX is quenched by NaTiO2 NS, and the dominant process for this quenching has been attributed to the process of photoinduced electron injection from excited ZnPPIX to the nanosheets. Time resolved fluorescence measurement was used to elucidate the process of electron injection from the singlet state of ZnPPIX to the conduction band of NaTiO2 NS. Electron injection from the dye to the semiconductor is very fast (ket ≈ 10(11) s(-1)), much faster than previously reported rates. The large two-dimensional surface offered by the NaTiO2 NS for interaction with the dye and the favorable driving force for electron injection from ZnPPIX to NaTiO2 NS (ΔGinj = -0.66 V) are the two important factors responsible for such efficient electron injection. Thus, NaTiO2 NS can serve as an effective alternative to the use of TiO2 nanoparticles in dye sensitized solar cells (DSSCs).

4.
Nanoscale ; 6(21): 12856-63, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25230335

RESUMEN

Few-layer transition metal dichalcogenide alloys based on molybdenum sulphoselenides [MoS2(1-x)Se2x] possess higher hydrogen evolution (HER) activity compared to pristine few-layer MoS2 and MoSe2. Variation of the sulphur or selenium content in the parent dichalcogenides reveals a systematic structure-activity relationship for different compositions of alloys, and it is found that the composition MoS1.0Se1.0 shows the highest HER activity amongst the catalysts studied. The tunable electronic structure of MoS2/MoSe2 upon Se/S incorporation probably assists in the realization of high HER activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA