Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958620

RESUMEN

Currently, nanopore-based technology for the determination of the functional activity of single enzyme molecules continues its development. The use of natural nanopores for studying single enzyme molecules is known. At that, the approach utilizing artificial solid-state nanopores is also promising but still understudied. Herein, we demonstrate the use of a nanotechnology-based approach for the investigation of the enzymatic activity of a single molecule of horseradish peroxidase with a solid-state nanopore. The artificial 5 nm solid-state nanopore has been formed in a 40 nm thick silicon nitride structure. A single molecule of HRP has been entrapped into the nanopore. The activity of the horseradish peroxidase (HRP) enzyme molecule inserted in the nanopore has been monitored by recording the time dependence of the ion current through the nanopore in the course of the reaction of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) oxidation reaction. We have found that in the process of ABTS oxidation in the presence of 2.5 mM hydrogen peroxide, individual HRP enzyme molecules are able to retain activity for approximately 700 s before a decrease in the ion current through the nanopore, which can be explained by structural changes of the enzyme.


Asunto(s)
Nanoporos , Peroxidasa de Rábano Silvestre/química , Ácidos Sulfónicos/química , Benzotiazoles/química , Sustancias Macromoleculares
2.
Nat Commun ; 14(1): 5737, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714836

RESUMEN

Local deformation of atomically thin van der Waals materials provides a powerful approach to create site-controlled chip-compatible single-photon emitters (SPEs). However, the microscopic mechanisms underlying the formation of such strain-induced SPEs are still not fully clear, which hinders further efforts in their deterministic integration with nanophotonic structures for developing practical on-chip sources of quantum light. Here we investigate SPEs with single-photon purity up to 98% created in monolayer WSe2 via nanoindentation. Using photoluminescence imaging in combination with atomic force microscopy, we locate single-photon emitting sites on a deep sub-wavelength spatial scale and reconstruct the details of the surrounding local strain potential. The obtained results suggest that the origin of the observed single-photon emission is likely related to strain-induced spectral shift of dark excitonic states and their hybridization with localized states of individual defects.

3.
Light Sci Appl ; 12(1): 237, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37723158

RESUMEN

Electric field is a powerful instrument in nanoscale engineering, providing wide functionalities for control in various optical and solid-state nanodevices. The development of a single optically resonant nanostructure operating with a charge-induced electrical field is challenging, but it could be extremely useful for novel nanophotonic horizons. Here, we show a resonant metal-semiconductor nanostructure with a static electric field created at the interface between its components by charge carriers generated via femtosecond laser irradiation. We study this field experimentally, probing it by second-harmonic generation signal, which, in our system, is time-dependent and has a non-quadratic signal/excitation power dependence. The developed numerical models reveal the influence of the optically induced static electric field on the second harmonic generation signal. We also show how metal work function and silicon surface defect density for different charge carrier concentrations affect the formation of this field. We estimate the value of optically-generated static electric field in this nanoantenna to achieve ≈108V/m. These findings pave the way for the creation of nanoantenna-based optical memory, programmable logic and neuromorphic devices.

4.
J Phys Chem Lett ; 14(22): 5134-5140, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37252711

RESUMEN

Nanoscale electrically driven light-emitting sources with tunable wavelength represent a milestone for implementation of integrated optoelectronic chips. Plasmonic nanoantennas exhibiting an enhanced local density of optical states (LDOS) and strong Purcell effect hold promise for fabrication of bright nanoscale light emitters. Here, we justify gold parabola-shaped nanobumps and their ordered arrays produced by direct ablation-free femtosecond laser printing as broadband plasmonic light sources electrically excited by a probe of scanning tunneling microscope (STM). I-V curves of the probe-nanoantenna tunnel junction reveal characteristic bias voltages correlating with visible-range localized (0.55 and 0.85 µm) and near-IR (1.65 and 1.87 µm) collective plasmonic modes of these nanoantennas. These multiband resonances confirmed by optical spectroscopy and full-wave simulations provide enhanced LDOS for efficient electrically driven and bias-tuned light emission. Additionally, our studies confirm remarkable applicability of STM for accurate study of optical modes supported by the plasmonic nanoantennas at nanoscale spatial resolution.

5.
Small ; 19(28): e2301660, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178371

RESUMEN

Emerging technologies for integrated optical circuits demand novel approaches and materials. This includes a search for nanoscale waveguides that should satisfy criteria of high optical density, small cross-section, technological feasibility and structural perfection. All these criteria are met with self-assembled gallium phosphide (GaP) epitaxial nanowires. In this work, the effects of the nanowire geometry on their waveguiding properties are studied both experimentally and numerically. Cut-off wavelength dependence on the nanowire diameter is analyzed to demonstrate the pathways for fabrication of low-loss and subwavelength cross-section waveguides for visible and near-infrared (IR) ranges. Probing the waveguides with a supercontinuum laser unveils the filtering properties of the nanowires due to their resonant action. The nanowires exhibit perfect elasticity allowing fabrication of curved waveguides. It is demonstrated that for the nanowire diameters exceeding the cut-off value, the bending does not sufficiently reduce the field confinement promoting applicability of the approach for the development of nanoscale waveguides with a preassigned geometry. Optical X-coupler made of two GaP nanowires allowing for spectral separation of the signal is fabricated. The results of this work open new ways for the utilization of GaP nanowires as elements of advanced photonic logic circuits and nanoscale interferometers.

6.
Opt Express ; 31(9): 14286-14298, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157296

RESUMEN

The first steps towards the development and characterization of next-generation chirped volume Bragg gratings (CVBGs) by means of fs laser inscription were made. Based on the phase mask inscription technique we realized CVBGs in fused silica with a 3 × 3 mm2 aperture and a length of almost 12 mm with a chirp rate of ∼190 ps/nm around a central wavelength of 1030.5 nm. Strong mechanical stresses induced serious polarization and phase distortions of the radiation. We show a possible approach to solution of this problem. The change in the linear absorption coefficient associated with local modification of fused silica is quite small, enabling utilization of this type of gratings in high average power lasers.

7.
Nanomaterials (Basel) ; 13(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37177108

RESUMEN

Nonlinear silicon photonics has a high compatibility with CMOS technology and therefore is particularly attractive for various purposes and applications. Second harmonic generation (SHG) in silicon nanowires (NWs) is widely studied for its high sensitivity to structural changes, low-cost fabrication, and efficient tunability of photonic properties. In this study, we report a fabrication and SHG study of Si nanowire/siloxane flexible membranes. The proposed highly transparent flexible membranes revealed a strong nonlinear response, which was enhanced via activation by an infrared laser beam. The vertical arrays of several nanometer-thin Si NWs effectively generate the SH signal after being exposed to femtosecond infrared laser irradiation in the spectral range of 800-1020 nm. The stable enhancement of SHG induced by laser exposure can be attributed to the functional modifications of the Si NW surface, which can be used for the development of efficient nonlinear platforms based on silicon. This study delivers a valuable contribution to the advancement of optical devices based on silicon and presents novel design and fabrication methods for infrared converters.

8.
Nanoscale ; 15(5): 2332-2339, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36637064

RESUMEN

Semiconductor nanowires are the perfect platform for nanophotonic applications owing to their resonant, waveguiding optical properties and technological capabilities providing control over their crystalline and chemical compositions. The vapor-liquid-solid growth mechanism allows the formation of hybrid metal-dielectric nanostructures promoting sub-wavelength light manipulation. In this work, we explore both experimentally and numerically the plasmonic effects promoted by a gallium (Ga) nanoparticle optical antenna decorating the facet of gallium phosphide (GaP) nanowires. Raman, photoluminescence and near-field mapping techniques are used to study the effects. We demonstrate several phenomena including field enhancement, antenna effect and increase in internal reflection. We show that the observed effects have to be considered when nanowires with a plasmonic particle are used in nanophotonic circuits and discuss the ways for utilization of these effects for efficient coupling of light into nanowire waveguide and field tailoring. The results open up promising pathways for the development of both passive and active nanophotonic elements, light harvesting and sensorics.

9.
Polymers (Basel) ; 14(24)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36559907

RESUMEN

Photoluminescent lanthanide complexes of Eu3+ and Tb3+ as central atoms and N6,N6'-diisopropyl-[2,2'-bipyridine]-6,6'-dicarboxamide as ligand were synthesized. The structure of these complexes was established by single-crystal X-ray diffraction, mass spectrometry, 1H and 13C nuclear magnetic resonance, ultraviolet-visible, infrared spectroscopy, and thermogravimetry. Bipyridinic ligands provide formation of coordinatively saturated complexes of lanthanide ions and strong photoluminescence (PL). The Eu3+- and Tb3+-complexes exhibit PL emission in the red and green regions observed at a 340 nm excitation. The quantum yield for the complexes was revealed to be 36.5 and 12.6% for Tb3+- and Eu3+-complexes, respectively. These lanthanide compounds could be employed as photoluminescent solid-state compounds and as emitting fillers in polymer (for example, polyethylene glycol) photoluminescent materials.

10.
Materials (Basel) ; 15(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36556538

RESUMEN

Polysiloxanes and materials based on them (silicone materials) are of great interest in optoelectronics due to their high flexibility, good film-forming ability, and optical transparency. According to the literature, polysiloxanes are suggested to be very promising in the field of optoelectronics and could be employed in the composition of liquid crystal devices, computer memory drives organic light emitting diodes (OLED), and organic photovoltaic devices, including dye synthesized solar cells (DSSC). Polysiloxanes are also a promising material for novel optoectronic devices, such as LEDs based on arrays of III-V nanowires (NWs). In this review, we analyze the currently existing types of silicone materials and their main properties, which are used in optoelectronic device development.

11.
Nano Lett ; 22(23): 9523-9528, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36449382

RESUMEN

In this work we investigate the Raman response of extremely strained gallium phosphide nanowires. We analyze new strain-induced spectral phenomena such as 2-fold and 3-fold phonon peak splitting which arise due to nontrivial internal electric field distribution coupled with inhomogeneous strain. We show that high bending strain acts as a probe allowing us to define the electric field distribution with deep subwavelength resolution using the corresponding changes of the Raman spectra. We investigate the nature of the localization with respect to nanowire diameter, excitation spot position, and light polarization, supporting the experiment with 3D numerical modeling. Based on our findings we propose a research tool allowing to precisely localize the electric field in a certain subwavelength region of the nanophotonic resonator.

12.
J Phys Chem Lett ; 13(37): 8775-8782, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36103372

RESUMEN

The films of single-walled carbon nanotubes (SWCNTs) are a promising material for flexible transparent electrodes, which performance depends not only on the properties of individual nanotubes but also, foremost, on bundling of individual nanotubes. This work investigates the impact of densification on optical and electronic properties of SWCNT bundles and fabricated films. Our ab initio analysis shows that the optimally densified bundles, consisting of a mixture of quasi-metallic and semiconducting SWCNTs, demonstrate quasi-metallic behavior and can be considered as an effective conducting medium. Our density functional theory calculations indicate the band curving and bandgap narrowing with the reduction of the distance between nanotubes inside bundles. Simulation results are consistent with the observed conductivity improvement and shift of the absorption peaks in SWCNT films densified in isopropyl alcohol. Therefore, not only individual nanotubes but also the bundles should be considered as building blocks for high-performance transparent conductive SWCNT-based films.

13.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35745332

RESUMEN

The direct integration of epitaxial III-V and III-N heterostructures on Si substrates is a promising platform for the development of optoelectronic devices. Nanowires, due to their unique geometry, allow for the direct synthesis of semiconductor light-emitting diodes (LED) on crystalline lattice-mismatched Si wafers. Here, we present molecular beam epitaxy of regular arrays n-GaN/i-InGaN/p-GaN heterostructured nanowires and tripods on Si/SiO2 substrates prepatterned with the use of cost-effective and rapid microsphere optical lithography. This approach provides the selective-area synthesis of the ordered nanowire arrays on large-area Si substrates. We experimentally show that the n-GaN NWs/n-Si interface demonstrates rectifying behavior and the fabricated n-GaN/i-InGaN/p-GaN NWs-based LEDs have electroluminescence in the broad spectral range, with a maximum near 500 nm, which can be employed for multicolor or white light screen development.

14.
Nanomaterials (Basel) ; 12(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35630977

RESUMEN

It is very natural to use silicon as a primary material for microelectronics. However, silicon application in nanophotonics is limited due to the indirect gap of its energy band structure. To improve the silicon emission properties, it can be combined with a plasmonic part. The resulting metal-dielectric (hybrid) nanostructures have shown their excellence compared to simple metallic dielectric nanostructures. Still, in many cases, the fabrication of such structures is time consuming and quite difficult. Here, for the first time, we demonstrate a single-step and lithography-free laser-induced dewetting of bi-layer nanoscale-thickness gold-silicon films supported by a glass substrate to produce hybrid nanoparticles. For obtaining hybrid nanoparticles, we study nonlinear photoluminescence by mapping their optical response and morphology by scanning electron microscopy. This method can be used for the fabrication of arrays of hybrid nanoparticles providing white-light photoluminescence with a good control of their microscopic sizes and position. The developed approach can be useful for a wide range of photonic applications including the all-optical data processing and storage where miniaturization down to micro- and nanoscale together with an efficiency increase is of high demand.

15.
J Phys Chem Lett ; 13(20): 4612-4620, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35588008

RESUMEN

A micro- or nanosized electrically controlled source of optical radiation is one of the key elements in optoelectronic systems. The phenomenon of light emission via inelastic tunneling (LEIT) of electrons through potential barriers or junctions opens up new possibilities for development of such sources. In this work, we present a simple approach for fabrication of nanoscale electrically driven light sources based on LEIT. We employ STM lithography to locally modify the surface of a Si/Au film stack via heating, which is enabled by a high-density tunnel current. Using the proposed technique, hybrid Si/Au nanoantennas with a minimum diameter of 60 nm were formed. Studying both electronic and optical properties of the obtained nanoantennas, we confirm that the resulting structures can efficiently emit photons in the visible range because of inelastic scattering of electrons. The proposed approach allows for fabrication of nanosized hybrid nanoantennas and studying their properties using STM.

16.
Opt Lett ; 47(3): 557-560, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103670

RESUMEN

A compact optical layout of a pulse shaper for strongly chirped laser pulses of nanosecond time scale exploiting a tilted chirped volume Bragg grating and a programmable spatial light modulator is proposed. The setup has a non-zero frequency dispersion; thus it may be used for stretching or compressing the pulse and controlling its shape simultaneously. The feasibility of spectral shaping with a resolution of 0.16 nm, corresponding to a time resolution of 150 ps, and a contrast ratio of 102 is demonstrated experimentally.

17.
Nanomaterials (Basel) ; 12(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055259

RESUMEN

Tailorable synthesis of axially heterostructured epitaxial nanowires (NWs) with a proper choice of materials allows for the fabrication of novel photonic devices, such as a nanoemitter in the resonant cavity. An example of the structure is a GaP nanowire with ternary GaPAs insertions in the form of nano-sized discs studied in this work. With the use of the micro-photoluminescence technique and numerical calculations, we experimentally and theoretically study photoluminescence emission in individual heterostructured NWs. Due to the high refractive index and near-zero absorption through the emission band, the photoluminescence signal tends to couple into the nanowire cavity acting as a Fabry-Perot resonator, while weak radiation propagating perpendicular to the nanowire axis is registered in the vicinity of each nano-sized disc. Thus, within the heterostructured nanowire, both amplitude and spectrally anisotropic photoluminescent signals can be achieved. Numerical modeling of the nanowire with insertions emitting in infrared demonstrates a decay in the emission directivity and simultaneous rise of the emitters coupling with an increase in the wavelength. The emergence of modulated and non-modulated radiation is discussed, and possible nanophotonic applications are considered.

18.
Nanoscale ; 14(3): 993-1000, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34989740

RESUMEN

Semiconductor nanowires exhibit numerous capabilities to advance the development of future optoelectronic devices. Among the III-V material family, gallium phosphide (GaP) is an attractive platform with low optical absorption and high nonlinear susceptibility, making it especially promising for nanophotonic applications. However, investigation of single nanostructures and their waveguiding properties remains challenging owing to typically planar experimental arrangements. Here we study the linear and nonlinear waveguiding optical properties of a single GaP nanowire in a special experimental layout, where an optically trapped structure is aligned along its major axis. We demonstrate efficient second harmonic generation in individual nanowires and unravel phase matching conditions, linking between linear guiding properties of the structure and its nonlinear tensorial susceptibility. The capability to pick up single nanowires, sort them with the aid of optomechanical manipulation and accurately position pre-tested structures opens a new avenue for the generation of optoelectronic origami-type devices.

19.
Nanomaterials (Basel) ; 11(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34835737

RESUMEN

It is shown for the first time that the vacuum poling of soda-lime silicate glass and the subsequent processing of the glass in a melt containing silver ions results in the formation of silver nanoparticles buried in the subanodic region of the glass at a depth of 800-1700 nm. We associate the formation of nanoparticles with the transfer of electrons from negatively charged non-bridging oxygen atoms to silver ions, their reduction as well as their clustering. The nanoparticles do not form in the ion-depleted area just beneath the glass surface, which indicates the absence of a spatial charge (negatively charged oxygen atoms) in this region of the vacuum-poled glass. In consequence, the neutralization of the glass via switching of non-bridging oxygen bonds to bridging ones, which leads to the release of oxygen, should occur in parallel with the shift of calcium, magnesium, and sodium ions into the depth of the glass.

20.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34684990

RESUMEN

We demonstrate flexible red light-emitting diodes based on axial GaPAs/GaP heterostructured nanowires embedded in polydimethylsiloxane membranes with transparent electrodes involving single-walled carbon nanotubes. The GaPAs/GaP axial nanowire arrays were grown by molecular beam epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-walled carbon nanotube films has the main electroluminescence line at 670 nm. Membrane-based light-emitting diodes (LEDs) were compared with GaPAs/GaP NW array LED devices processed directly on Si growth substrate revealing similar electroluminescence properties. Demonstrated membrane-based red LEDs are opening an avenue for flexible full color inorganic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...