Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neural Eng ; 20(5)2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37683665

RESUMEN

Objective. Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in adolescents that can seriously impair a person's attention function, cognitive processes, and learning ability. Currently, clinicians primarily diagnose patients based on the subjective assessments of the Diagnostic and Statistical Manual of Mental Disorders-5, which can lead to delayed diagnosis of ADHD and even misdiagnosis due to low diagnostic efficiency and lack of well-trained diagnostic experts. Deep learning of electroencephalogram (EEG) signals recorded from ADHD patients could provide an objective and accurate method to assist physicians in clinical diagnosis.Approach. This paper proposes the EEG-Transformer deep learning model, which is based on the attention mechanism in the traditional Transformer model, and can perform feature extraction and signal classification processing for the characteristics of EEG signals. A comprehensive comparison was made between the proposed transformer model and three existing convolutional neural network models.Main results. The results showed that the proposed EEG-Transformer model achieved an average accuracy of 95.85% and an average AUC value of 0.9926 with the fastest convergence speed, outperforming the other three models. The function and relationship of each module of the model are studied by ablation experiments. The model with optimal performance was identified by the optimization experiment.Significance. The EEG-Transformer model proposed in this paper can be used as an auxiliary tool for clinical diagnosis of ADHD, and at the same time provides a basic model for transferable learning in the field of EEG signal classification.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adolescente , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Electroencefalografía , Suministros de Energía Eléctrica , Aprendizaje , Redes Neurales de la Computación
2.
Comput Biol Med ; 163: 107091, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37331099

RESUMEN

The accurate segmentation of carotid plaques in ultrasound videos will provide evidence for clinicians to evaluate the properties of plaques and treat patients effectively. However, the confusing background, blurry boundaries and plaque movement in ultrasound videos make accurate plaque segmentation challenging. To address the above challenges, we propose the Refined Feature-based Multi-frame and Multi-scale Fusing Gate Network (RMFG_Net), which captures spatial and temporal features in consecutive video frames for high-quality segmentation results and no manual annotation of the first frame. A spatial-temporal feature filter is proposed to suppress the noise of low-level CNN features and promote the detailed target area. To obtain a more accurate plaque position, we propose a transformer-based cross-scale spatial location algorithm, which models the relationship between adjacent layers of consecutive video frames to achieve stable positioning. To make full use of more detailed and semantic information, multi-layer gated computing is applied to fuse features of different layers, ensuring sufficient useful feature map aggregation for segmentation. Experiments on two clinical datasets demonstrate that the proposed method outperforms other state-of-the-art methods under different evaluation metrics, and it processes images with a speed of 68 frames per second which is suitable for real-time segmentation. A large number of ablation experiments were conducted to demonstrate the effectiveness of each component and experimental setting, as well as the potential of the proposed method in ultrasound video plaque segmentation tasks. The codes can be publicly available from https://github.com/xifengHuu/RMFG_Net.git.


Asunto(s)
Algoritmos , Benchmarking , Humanos , Ultrasonografía , Movimiento , Semántica , Procesamiento de Imagen Asistido por Computador
3.
Sensors (Basel) ; 23(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299934

RESUMEN

As the global population grows, and urbanization becomes more prevalent, cities often struggle to provide convenient, secure, and sustainable lifestyles due to the lack of necessary smart technologies. Fortunately, the Internet of Things (IoT) has emerged as a solution to this challenge by connecting physical objects using electronics, sensors, software, and communication networks. This has transformed smart city infrastructures, introducing various technologies that enhance sustainability, productivity, and comfort for urban dwellers. By leveraging Artificial Intelligence (AI) to analyze the vast amount of IoT data available, new opportunities are emerging to design and manage futuristic smart cities. In this review article, we provide an overview of smart cities, defining their characteristics and exploring the architecture of IoT. A detailed analysis of various wireless communication technologies employed in smart city applications is presented, with extensive research conducted to determine the most appropriate communication technologies for specific use cases. The article also sheds light on different AI algorithms and their suitability for smart city applications. Furthermore, the integration of IoT and AI in smart city scenarios is discussed, emphasizing the potential contributions of 5G networks coupled with AI in advancing modern urban environments. This article contributes to the existing literature by highlighting the tremendous opportunities presented by integrating IoT and AI, paving the way for the development of smart cities that significantly enhance the quality of life for urban dwellers while promoting sustainability and productivity. By exploring the potential of IoT, AI, and their integration, this review article provides valuable insights into the future of smart cities, demonstrating how these technologies can positively impact urban environments and the well-being of their inhabitants.


Asunto(s)
Inteligencia Artificial , Calidad de Vida , Ciudades , Programas Informáticos , Algoritmos
4.
Biosensors (Basel) ; 12(11)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36421162

RESUMEN

Chronic implantation of an epidural Electrocorticography (ECoG) electrode produces thickening of the dura mater and proliferation of the fibrosis around the interface sites, which is a significant concern for chronic neural ECoG recording applications used to monitor various neurodegenerative diseases. This study describes a new approach to developing a slippery liquid-infused porous surface (SLIPS) on the flexible ECoG electrode for a chronic neural interface with the advantage of increased cell adhesion. In the demonstration, the electrode was fabricated on the polyimide (PI) substrate, and platinum (Pt)-gray was used for creating the porous nanocone structure for infusing the silicone oil. The combination of nanocone and the infused slippery oil layer created the SLIPS coating, which has a low impedance (4.68 kΩ) level favourable for neural recording applications. The electrochemical impedance spectroscopy and equivalent circuit modelling also showed the effect of the coating on the recording site. The cytotoxicity study demonstrated that the coating does not have any cytotoxic potentiality; hence, it is biocompatible for human implantation. The in vivo (acute recording) neural recording on the rat model also confirmed that the noise level could be reduced significantly (nearly 50%) and is helpful for chronic ECoG recording for more extended neural signal recording applications.


Asunto(s)
Electrocorticografía , Polímeros , Animales , Ratas , Humanos , Electrodos Implantados , Polímeros/química , Sistema Nervioso , Platino (Metal)
5.
Sensors (Basel) ; 22(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36365840

RESUMEN

The proliferation of sensors to capture parametric measures or event data over a myriad of networking topologies is growing exponentially to improve our daily lives. Large amounts of data must be shared on constrained network infrastructure, increasing delays and loss of valuable real-time information. Our research presents a solution for the health, security, safety, and fire domains to obtain temporally synchronous, credible and high-resolution data from sensors to maintain the temporal hierarchy of reported events. We developed a multisensor fusion framework with energy conservation via domain-specific "wake up" triggers that turn on low-power model-driven microcontrollers using machine learning (TinyML) models. We investigated optimisation techniques using anomaly detection modes to deliver real-time insights in demanding life-saving situations. Using energy-efficient methods to analyse sensor data at the point of creation, we facilitated a pathway to provide sensor customisation at the "edge", where and when it is most needed. We present the application and generalised results in a real-life health care scenario and explain its application and benefits in other named researched domains.


Asunto(s)
Atención a la Salud , Aprendizaje Automático , Inteligencia
6.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35890817

RESUMEN

This paper presents a substantial review of the deployment of wearable sensors for healthcare applications. Wearable sensors hold a pivotal position in the microelectronics industry due to their role in monitoring physiological movements and signals. Sensors designed and developed using a wide range of fabrication techniques have been integrated with communication modules for transceiving signals. This paper highlights the entire chronology of wearable sensors in the biomedical sector, starting from their fabrication in a controlled environment to their integration with signal-conditioning circuits for application purposes. It also highlights sensing products that are currently available on the market for a comparative study of their performances. The conjugation of the sensing prototypes with the Internet of Things (IoT) for forming fully functioning sensorized systems is also shown here. Finally, some of the challenges existing within the current wearable systems are shown, along with possible remedies.


Asunto(s)
Dispositivos Electrónicos Vestibles , Atención a la Salud
7.
Biosensors (Basel) ; 12(7)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35884353

RESUMEN

The release of chemicals and microorganisms from various sources, such as industry, agriculture, animal farming, wastewater treatment plants, and flooding, into water systems have caused water pollution in several parts of our world, endangering aquatic ecosystems and individual health. World Health Organization (WHO) has introduced strict standards for the maximum concentration limits for nutrients and chemicals in drinking water, surface water, and groundwater. It is crucial to have rapid, sensitive, and reliable analytical detection systems to monitor the pollution level regularly and meet the standard limit. Electrochemical biosensors are advantageous analytical devices or tools that convert a bio-signal by biorecognition elements into a significant electrical response. Thanks to the micro/nano fabrication techniques, electrochemical biosensors for sensitive, continuous, and real-time detection have attracted increasing attention among researchers and users worldwide. These devices take advantage of easy operation, portability, and rapid response. They can also be miniaturized, have a long-life span and a quick response time, and possess high sensitivity and selectivity and can be considered as portable biosensing assays. They are of special importance due to their great advantages such as affordability, simplicity, portability, and ability to detect at on-site. This review paper is concerned with the basic concepts of electrochemical biosensors and their applications in various water quality monitoring, such as inorganic chemicals, nutrients, microorganisms' pollution, and organic pollutants, especially for developing real-time/online detection systems. The basic concepts of electrochemical biosensors, different surface modification techniques, bio-recognition elements (BRE), detection methods, and specific real-time water quality monitoring applications are reviewed thoroughly in this article.


Asunto(s)
Técnicas Biosensibles , Contaminantes Ambientales , Animales , Técnicas Biosensibles/métodos , Ecosistema , Técnicas Electroquímicas , Calidad del Agua
8.
Sensors (Basel) ; 22(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35898013

RESUMEN

This paper presents a new water-level-sensing mechanism based on planar coils fabricated on a printed circuit board (PCB). In addition to level, the sensor detects any relative increase in conductivity compared to that of clean water, which is an indicator of its quality. The sensing mechanism utilizes the eddy current induced in the water column, the corresponding change in the coil inductance, and the change in the turn-to-turn capacitance of the coil in the presence of water. Although several level sensors are available, there is none that gives the level and quality information using a single sensing element. Since both water quantity and quality measurements are fundamental in realizing efficient water and wastewater management, obtaining these two parameters from the same sensor is very beneficial. A scalable, planar coil-based sensor that helps achieve this goal is designed, fabricated, and tested in a laboratory setting. The results illustrate that the reactance of the sensor coil measured at a frequency (1 kHz for the prototype) much lower than the self-resonance of the coil gives reliable information about the level of water, while the measurement made at resonance, using an inductance-to-digital converter, is a clear indicator of its conductivity and, hence, quality.

9.
Sensors (Basel) ; 21(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34883879

RESUMEN

Wearable smart devices are widely used to determine various physico-mechanical parameters at chosen intervals. The proliferation of such devices has been driven by the acceptance of enhanced technology in society [...].


Asunto(s)
Dispositivos Electrónicos Vestibles
10.
Mater Sci Eng C Mater Biol Appl ; 123: 111972, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33812600

RESUMEN

Biphasic calcium phosphate ceramics (BCPs) have been extensively used as a bone graft in dental clinics to reconstruct lost bone in the jaw and peri-implant hard tissue due to their good bone conduction and similar chemical structure to the teeth and bone. However, BCPs are not inherently osteoinductive and need additional modification and treatment to enhance their osteoinductivity. The present study aims to develop an innovative strategy to improve the osteoinductivity of BCPs using unique features of zeolitic imidazolate framework-8 (ZIF8). In this method, commercial BCPs (Osteon II) were pre-coated with a zeolitic imidazolate framework-8/polydopamine/polyethyleneimine (ZIF8/PDA/PEI) layer to form a uniform and compact thin film of ZIF8 on the surface of BCPs. The surface morphology and chemical structure of ZIF8 modified Osteon II (ZIF8-Osteon) were confirmed using various analytical techniques such as XRD, FTIR, SEM, and EDX. We evaluated the effect of ZIF8 coating on cell attachment, growth, and osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs). The results revealed that altering the surface chemistry and topography of Osteon II using ZIF8 can effectively promote cell attachment, proliferation, and bone regeneration in both in vitro and in vivo conditions. In conclusion, the method applied in this study is simple, low-cost, and time-efficient and can be used as a versatile approach for improving osteoinductivity and osteoconductivity of other types of alloplastic bone grafts.


Asunto(s)
Osteogénesis , Zeolitas , Regeneración Ósea , Fosfatos de Calcio , Diferenciación Celular , Humanos , Hidroxiapatitas
11.
Sensors (Basel) ; 21(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578782

RESUMEN

The use of multi-walled carbon nanotube (MWCNT)-based sensors for strain-strain applications is showcased in this paper. Extensive use of MWCNTs has been done for the fabrication and implementation of flexible sensors due to their enhanced electrical, mechanical, and thermal properties. These nanotubes have been deployed both in pure and composite forms for obtaining highly efficient sensors in terms of sensitivity, robustness, and longevity. Among the wide range of applications that MWCNTs have been exploited for, strain-sensing has been one of the most popular ones due to the high mechanical flexibility of these carbon allotropes. The MWCNT-based sensors have been able to deduce a broad spectrum of macro- and micro-scaled tensions through structural changes. This paper highlights some of the well-approved conjugations of MWCNTs with different kinds of polymers and other conductive nanomaterials to form the electrodes of the strain sensors. It also underlines some of the measures that can be taken in the future to improve the quality of these MWCNT-based sensors for strain-related applications.

12.
IEEE J Biomed Health Inform ; 25(4): 1305-1314, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32960771

RESUMEN

Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of 73.7 ±0.8 % significantly outperformed the mean accuracy of 59.9 ±0.7 % obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications.


Asunto(s)
Radar , Sueño , Humanos , Postura
13.
IEEE Sens J ; 21(6): 7162-7178, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37974630

RESUMEN

The coronavirus disease 19 (COVID-19) pandemic that has been raging in 2020 does affect not only the physical state but also the mental health of the general population, particularly, that of the healthcare workers. Given the unprecedented large-scale impacts of the COVID-19 pandemic, digital technology has gained momentum as invaluable social interaction and health tracking tools in this time of great turmoil, in part due to the imposed state-wide mobilization limitations to mitigate the risk of infection that might arise from in-person socialization or hospitalization. Over the last five years, there has been a notable increase in the demand and usage of mobile and wearable devices as well as their adoption in studies of mental fitness. The purposes of this scoping review are to summarize evidence on the sweeping impact of COVID-19 on mental health as well as to evaluate the merits of the devices for remote psychological support. We conclude that the COVID-19 pandemic has inflicted a significant toll on the mental health of the population, leading to an upsurge in reports of pathological stress, depression, anxiety, and insomnia. It is also clear that mobile and wearable devices (e.g., smartwatches and fitness trackers) are well placed for identifying and targeting individuals with these psychological burdens in need of intervention. However, we found that most of the previous studies used research-grade wearable devices that are difficult to afford for the normal consumer due to their high cost. Thus, the possibility of replacing the research-grade wearable devices with the current smartwatch is also discussed.

14.
Artículo en Inglés | MEDLINE | ID: mdl-32698330

RESUMEN

This paper exhibits a thorough review of the use of impedimetric sensors for the analysis of food quality. It helps to understand the contribution of some of the major types of impedimetric sensors that are used for this application. The deployment of impedimetric sensing prototypes has been advantageous due to their wide linear range of responses, detection of the target analyte at low concentrations, good stability, high accuracy and high reproducibility in the results. The choice of these sensors was classified on the basis of structure and the conductive material used to develop them. The first category included the use of nanomaterials such as graphene and metallic nanowires used to form the sensing devices. Different forms of graphene nanoparticles, such as nano-hybrids, nanosheets, and nano-powders, have been largely used to sense biomolecules in the micro-molar range. The use of conductive materials such as gold, copper, tungsten and tin to develop nanowire-based prototypes for the inspection of food quality has also been shown. The second category was based on conventional electromechanical circuits such as electronic noses and other smart systems. Within this sector, the standardized systems, such as electronic noses, and LC circuit -based systems have been explained. Finally, some of the challenges posed by the existing sensors have been listed out, along with an estimate of the increase in the number of sensors employed to assess food quality.


Asunto(s)
Técnicas Biosensibles , Calidad de los Alimentos , Grafito/química , Nanocables/química , Humanos
15.
Front Hum Neurosci ; 14: 78, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265673

RESUMEN

Electroencephalography (EEG) signal is an electrophysiological recording from electrodes placed on the scalp to reflect the electrical activities of the brain. Auditory brainstem response (ABR) is one type of EEG signals in response to an auditory stimulus, and it has been widely used to evaluate the potential disorders of the auditory function within the brain. Currently, the ABR measurements in the clinic usually adopt a fixed stimulation rate (FSR) technique in which the late evoked response could contaminate the ABR signals and deteriorate the waveform differentiation after averaging, thus compromising the overall auditory function assessment task. To resolve this issue, this study proposed a random stimulation rate (RSR) method by integrating a random interval between two adjacent stimuli. The results showed that the proposed RSR method was consistently repeatable and reliable in multiple trials of repeated measurements, and there was a large amplitude of successive late evoked response that would contaminate the ABR signals for conventional FSR methods. The ABR waveforms of the RSR method showed better wave I-V morphology across different stimulation rates and stimulus levels, and the improved ABR morphology played an important role in early diagnoses of auditory pathway abnormities. The correlation coefficients as functions of averaging time showed that the ABR waveform of the RSR method stabilizes significantly faster, and therefore, it could be used to speed up current ABR measurements with more reliable testing results. The study suggests that the proposed method would potentially aid the adequate reconstruction of ABR signals towards a more effective means of hearing loss screening, brain function diagnoses, and potential brain-computer interface.

16.
Sensors (Basel) ; 20(3)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012830

RESUMEN

The paper presents a review of some of the significant research done on 3D printed mold-based sensors performed in recent times. The utilization of the master molds to fabricate the different parts of the sensing prototypes have been followed for quite some time due to certain distinct advantages. Some of them are easy template preparation, easy customization of the developed products, quick fabrication, and minimized electronic waste. The paper explains the different kinds of sensors and actuators that have been developed using this technique, based on their varied structural dimensions, processed raw materials, designing, and product testing. These differences in the attributes were based on their individualistic application. Furthermore, some of the challenges related to the existing sensors and their possible respective solutions have also been mentioned in the paper. Finally, a market survey has been provided, stating the estimated increase in the annual growth of 3D printed sensors. It also states the type of 3D printing that has been preferred over the years, along with the range of sensors, and their related applications.

17.
Sensors (Basel) ; 19(16)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31395810

RESUMEN

The paper presents the design and fabrication of a low-cost and easy-to-fabricate laser-induced graphene sensor together with its implementation for multi-sensing applications. Laser-irradiation of commercial polymer film was applied for photo-thermal generation of graphene. The graphene patterned in an interdigitated shape was transferred onto Kapton sticky tape to form the electrodes of a capacitive sensor. The functionality of the sensor was validated by employing them in electrochemical and strain-sensing scenarios. Impedance spectroscopy was applied to investigate the response of the sensor. For the electrochemical sensing, different concentrations of sodium sulfate were prepared, and the fabricated sensor was used to detect the concentration differences. For the strain sensing, the sensor was deployed for monitoring of human joint movements and tactile sensing. The promising sensing results validating the applicability of the fabricated sensor for multiple sensing purposes are presented.

18.
Sensors (Basel) ; 19(13)2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31266148

RESUMEN

The paper highlights some of the significant works done in the field of medical and biomedical sensing using silicon-based technology. The use of silicon sensors is one of the pivotal and prolonged techniques employed in a range of healthcare, industrial and environmental applications by virtue of its distinct advantages over other counterparts in Microelectromechanical systems (MEMS) technology. Among them, the sensors for biomedical applications are one of the most significant ones, which not only assist in improving the quality of human life but also help in the field of microfabrication by imparting knowledge about how to develop enhanced multifunctional sensing prototypes. The paper emphasises the use of silicon, in different forms, to fabricate electrodes and substrates for the sensors that are to be used for biomedical sensing. The electrical conductivity and the mechanical flexibility of silicon vary to a large extent depending on its use in developing prototypes. The article also explains some of the bottlenecks that need to be dealt with in the current scenario, along with some possible remedies. Finally, a brief market survey is given to estimate a probable increase in the usage of silicon in developing a variety of biomedical prototypes in the upcoming years.


Asunto(s)
Técnicas Biosensibles , Nanocables/química , Silicio/química , Investigación Biomédica/métodos , Electrodos , Humanos , Microtecnología
19.
Sensors (Basel) ; 19(6)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934649

RESUMEN

This paper provides a substantial review of some of the significant research done on the fabrication and implementation of laser-assisted printed flexible sensors. In recent times, using laser cutting to develop printed flexible sensors has become a popular technique due to advantages such as the low cost of production, easy sample preparation, the ability to process a range of raw materials, and its usability for different functionalities. Different kinds of laser cutters are now available that work on samples very precisely via the available laser parameters. Thus, laser-cutting techniques provide huge scope for the development of prototypes with a varied range of sizes and dimensions. Meanwhile, researchers have been constantly working on the types of materials that can be processed, individually or in conjugation with one another, to form samples for laser-ablation. Some of the laser-printed techniques that are commonly considered for fabricating flexible sensors, which are discussed in this paper, include nanocomposite-based, laser-ablated, and 3D-printing. The developed sensors have been used for a range of applications, such as electrochemical and strain-sensing purposes. The challenges faced by the current printed flexible sensors, along with a market survey, are also outlined in this paper.

20.
IEEE J Biomed Health Inform ; 23(2): 703-713, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29994054

RESUMEN

Due to the variation in factors surrounding humans, the physiological impact of stress is reported to be different for each individual. Thus, an efficient stress monitoring system needs to assess both the physiological and psychological impact of stress on individual basis and translate these assessments into an accurate quantitative metric that is of value to the individual. Therefore, this study proposed a logistic regression based model that integrates data from psychological Stress Response Inventory, biochemical (salivary cortisol), and physiological (HRV measures) domains via a principle of triangulation for achieving high reliability and consistency during stress assessment. With the proposed model, a mental stress index (MSI) based on the correlation between salivary cortisol and HRV time-/frequency-domain features were established. A total of 30 college students were recruited to verify the feasibility of proposed method by identifying targeted stressful event. The obtained results reveal that MSI values were sensitive to acute stress, and could predict the association level of normal individual to a stress group with approximately 97% accuracy. Findings from this study could provide potential insight on self-tracking and training of individual's stress with adoption of wearable sensor system in a dynamic setting.


Asunto(s)
Monitoreo Ambulatorio , Procesamiento de Señales Asistido por Computador , Estrés Psicológico , Dispositivos Electrónicos Vestibles , Adulto , Análisis por Conglomerados , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Hidrocortisona/análisis , Masculino , Modelos Biológicos , Monitoreo Ambulatorio/instrumentación , Monitoreo Ambulatorio/métodos , Saliva/química , Autocuidado , Estrés Psicológico/clasificación , Estrés Psicológico/diagnóstico , Estrés Psicológico/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...