Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722021

RESUMEN

Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.


Asunto(s)
Hipocampo , Factores de Transcripción NFI , Células-Madre Neurales , ARN Mensajero , Ribonucleasa III , Animales , Factores de Transcripción NFI/metabolismo , Factores de Transcripción NFI/genética , Hipocampo/metabolismo , Hipocampo/citología , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Ratones , Células-Madre Neurales/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Oligodendroglía/metabolismo , Estabilidad del ARN , Diferenciación Celular
2.
Cell Stem Cell ; 30(10): 1382-1391.e5, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37673072

RESUMEN

Radial glial (RG) development is essential for cerebral cortex growth and organization. In humans, the outer radial glia (oRG) subtype is expanded and gives rise to diverse neurons and glia. However, the mechanisms regulating oRG differentiation are unclear. oRG cells express leukemia-inhibitory factor (LIF) receptors during neurogenesis, and consistent with a role in stem cell self-renewal, LIF perturbation impacts oRG proliferation in cortical tissue and organoids. Surprisingly, LIF treatment also increases the production of inhibitory interneurons (INs) in cortical cultures. Comparative transcriptomic analysis identifies that the enhanced IN population resembles INs produced in the caudal ganglionic eminence. To evaluate whether INs could arise from oRGs, we isolated primary oRG cells and cultured them with LIF. We observed the production of INs from oRG cells and an increase in IN abundance following LIF treatment. Our observations suggest that LIF signaling regulates the capacity of oRG cells to generate INs.


Asunto(s)
Células Ependimogliales , Neurogénesis , Humanos , Diferenciación Celular/fisiología , Neurogénesis/fisiología , Corteza Cerebral , Interneuronas/fisiología
3.
EMBO J ; 41(24): e111132, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36345783

RESUMEN

The cerebral cortex contains billions of neurons, and their disorganization or misspecification leads to neurodevelopmental disorders. Understanding how the plethora of projection neuron subtypes are generated by cortical neural stem cells (NSCs) is a major challenge. Here, we focused on elucidating the transcriptional landscape of murine embryonic NSCs, basal progenitors (BPs), and newborn neurons (NBNs) throughout cortical development. We uncover dynamic shifts in transcriptional space over time and heterogeneity within each progenitor population. We identified signature hallmarks of NSC, BP, and NBN clusters and predict active transcriptional nodes and networks that contribute to neural fate specification. We find that the expression of receptors, ligands, and downstream pathway components is highly dynamic over time and throughout the lineage implying differential responsiveness to signals. Thus, we provide an expansive compendium of gene expression during cortical development that will be an invaluable resource for studying neural developmental processes and neurodevelopmental disorders.


Asunto(s)
Células-Madre Neurales , Neuronas , Animales , Ratones , Diferenciación Celular , Linaje de la Célula/genética , Corteza Cerebral , Células Madre Embrionarias , Neurogénesis/genética , Neuronas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(30): e2122236119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858406

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors.


Asunto(s)
Astrocitos , Corteza Cerebral , SARS-CoV-2 , Tropismo Viral , Enzima Convertidora de Angiotensina 2/metabolismo , Astrocitos/enzimología , Astrocitos/virología , Corteza Cerebral/virología , Humanos , Organoides/virología , Cultivo Primario de Células , SARS-CoV-2/fisiología
5.
bioRxiv ; 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33469577

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. It proves fatal for one percent of those infected. Neurological symptoms, which range in severity, accompany a significant proportion of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized primary human cortical tissue and stem cell-derived cortical organoids. We find significant and predominant infection in cortical astrocytes in both primary and organoid cultures, with minimal infection of other cortical populations. Infected astrocytes had a corresponding increase in reactivity characteristics, growth factor signaling, and cellular stress. Although human cortical cells, including astrocytes, have minimal ACE2 expression, we find high levels of alternative coronavirus receptors in infected astrocytes, including DPP4 and CD147. Inhibition of DPP4 reduced infection and decreased expression of the cell stress marker, ARCN1. We find tropism of SARS-CoV-2 for human astrocytes mediated by DPP4, resulting in reactive gliosis-type injury.

6.
Sci Rep ; 10(1): 4625, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170161

RESUMEN

Neural stem cells (NSCs) generate neurons of the cerebral cortex with distinct morphologies and functions. How specific neuron production, differentiation and migration are orchestrated is unclear. Hippo signaling regulates gene expression through Tead transcription factors (TFs). We show that Hippo transcriptional coactivators Yap1/Taz and the Teads have distinct functions during cortical development. Yap1/Taz promote NSC maintenance and Satb2+ neuron production at the expense of Tbr1+ neuron generation. However, Teads have moderate effects on NSC maintenance and do not affect Satb2+ neuron differentiation. Conversely, whereas Tead2 blocks Tbr1+ neuron formation, Tead1 and Tead3 promote this early fate. In addition, we found that Hippo effectors regulate neuronal migration to the cortical plate (CP) in a reciprocal fashion, that ApoE, Dab2 and Cyr61 are Tead targets, and these contribute to neuronal fate determination and migration. Our results indicate that multifaceted Hippo signaling is pivotal in different aspects of cortical development.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Línea Celular , Corteza Cerebral/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Proteínas de la Matriz Extracelular/genética , Femenino , Vía de Señalización Hippo , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales , Especificidad de Órganos , Proteínas Serina-Treonina Quinasas/genética , Proteína Reelina , Serina Endopeptidasas/genética , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética
7.
Sci Adv ; 5(4): eaav7959, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30949582

RESUMEN

Dynamical control of cellular microenvironments is highly desirable to study complex processes such as stem cell differentiation and immune signaling. We present an ultra-multiplexed microfluidic system for high-throughput single-cell analysis in precisely defined dynamic signaling environments. Our system delivers combinatorial and time-varying signals to 1500 independently programmable culture chambers in week-long live-cell experiments by performing nearly 106 pipetting steps, where single cells, two-dimensional (2D) populations, or 3D neurospheres are chemically stimulated and tracked. Using our system and statistical analysis, we investigated the signaling landscape of neural stem cell differentiation and discovered "cellular logic rules" that revealed the critical role of signal timing and sequence in cell fate decisions. We find synergistic and antagonistic signal interactions and show that differentiation pathways are highly redundant. Our system allows dissection of hidden aspects of cellular dynamics and enables accelerated biological discovery.


Asunto(s)
Diferenciación Celular/genética , Microambiente Celular/genética , Células Madre Hematopoyéticas/citología , Células-Madre Neurales/citología , Análisis de la Célula Individual/métodos , Animales , Células Madre Hematopoyéticas/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Jurkat , Ratones , Microfluídica , Células 3T3 NIH , Células-Madre Neurales/fisiología
8.
J Exp Neurosci ; 12: 1179069518759332, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29551911

RESUMEN

The cerebral cortex is composed of billions of morphologically and functionally distinct neurons. These neurons are produced and organized in a regimental fashion during development. The ability of neurons to encode and elicit complex cognitive and motor functions depends on their precise molecular processes, identity, and connectivity established during development. Elucidating the cellular and molecular mechanisms that regulate development of the neocortex has been a challenge for many years. The cerebral cortical neuronal subtypes are classified based on morphology, function, intrinsic synaptic properties, location, connectivity, and marker gene expression. Development of the neocortex requires an orchestration of a series of processes including the appropriate determination, migration and positioning of the neurons, acquisition of layer-specific transcriptional hallmarks, and formation of precise axonal projections and networks. Historically, fate mapping, genome-wide analysis, and transcriptome profiling have provided many opportunities for the characterization of neuronal subtypes. During the course of this review, we will address the regimental organization of the cerebral cortex, dissect the cellular subtypes that contribute to cortical complexity, and outline their molecular hallmarks to understand cellular diversity in the cerebral cortex with a focus on the excitatory neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...