Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 920117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338044

RESUMEN

Bacteria regulate FtsZ protein levels through transcriptional and translational mechanisms for proper cell division. A cis-antisense RNA, StfZ, produced from the ftsA-ftsZ intergenic region, was proposed to regulate FtsZ level in Escherichia coli. However, its structural identity remained unknown. In this study, we determined the complete sequence of StfZ and identified the isoforms and its promoters. We find that under native physiological conditions, StfZ is expressed at a 1:6 ratio of StfZ:ftsZ mRNA at all growth phases from three promoters as three isoforms of 366, 474, and 552 nt RNAs. Overexpression of StfZ reduces FtsZ protein level, increases cell length, and blocks cell division without affecting the ftsZ mRNA stability. We did not find differential expression of StfZ under the stress conditions of heat shock, cold shock, or oxidative stress, or at any growth phase. These data indicated that the cis-encoded StfZ antisense RNA to ftsZ mRNA may be involved in the fine tuning of ftsZ mRNA levels available for translation as per the growth-phase-specific requirement at all phases of growth and cell division.

2.
Microbiol Spectr ; 10(6): e0228422, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36314912

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a group of pathogenic bacteria that are infamously resistant to ß-lactam antibiotics, a property attributed to the mecA gene. Recent studies have reported that mutations associated with the promoter region of pbp4 demonstrated high levels of ß-lactam resistance, suggesting the role of PBP4 as an important non-mecA mediator of ß-lactam resistance. The pbp4-promoter-associated mutations have been detected in strains with or without mecA. Our previous studies that were carried out in strains devoid of mecA described that pbp4-promoter-associated mutations lead to PBP4 overexpression and ß-lactam resistance. In this study, by introducing various pbp4-promoter-associated mutations in the genome of a MRSA strain, we demonstrate that PBP4 overexpression can supplement mecA-associated resistance in S. aureus and can lead to increased ß-lactam resistance. The promoter and regulatory region of pbp4 is shared with a divergently transcribed gene, abcA, which encodes a multidrug exporter. We demonstrate that the promoter mutations caused an upregulation of pbp4 and downregulation of abcA, confirming that the resistant phenotype is associated with PBP4 overexpression. PBP4 has also been associated with staphylococcal pathogenesis, however, its exact role remains unclear. Using a Caenorhabditis elegans model, we demonstrate that strains having increased PBP4 expression are less virulent than wild-type strains, suggesting that ß-lactam resistance mediated via PBP4 likely comes at the cost of virulence. IMPORTANCE Our study demonstrates the ability of PBP4 to be an important mediator of ß-lactam resistance in not only methicillin-susceptible Staphylococcus aureus (MSSA) background strains as previously demonstrated but also in MRSA strains. When present together, PBP2a and PBP4 overexpression can produce increased levels of ß-lactam resistance, causing complications in treatment. Thus, this study suggests the importance of monitoring PBP4-associated resistance in clinical settings, as well as understanding the mechanistic basis of associated resistance, so that treatments targeting PBP4 may be developed. This study also demonstrates that S. aureus strains with increased PBP4 expression are less pathogenic, providing important hints about the role of PBP4 in S. aureus resistance and pathogenesis.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Proteínas de Unión a las Penicilinas/metabolismo , Virulencia/genética , Resistencia betalactámica/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana
3.
ACS Omega ; 7(36): 32749-32753, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36120079

RESUMEN

Cyclic-di-AMP (CDA) is a signaling molecule that controls various cellular functions including antibiotic tolerance and osmoregulation in Staphylococcus aureus (S. aureus). In this study, we developed a novel biosensor (bsuO P6-4) for in vivo detection of CDA in S. aureus. The fluorescent biosensor is based on a natural CDA riboswitch from Bacillus subtilis connected at its P6 stem to the dye-binding aptamer Spinach. Our study showed that bsuO P6-4 could detect a wide concentration range of CDA in both laboratory and clinical strains, making it suitable for use in both basic and clinical research applications.

4.
Curr Res Microb Sci ; 3: 100148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909613

RESUMEN

Exposure to antibiotics most often generates oxidative stress in bacteria. Oxidative stress survival mechanisms would facilitate the evolution of antibiotic resistance. As part of an effort to understand oxidative stress survival mechanisms in mycobacteria, here we show that the minor subpopulation (SCs; short-sized cells constituting 10% of the population) of Mycobacterium smegmatis significantly increased the survival of its major kin subpopulation (NCs; normal/long-sized cells constituting 90% of the population) in the mid-log-phase (MLP) cultures against the oxidative stress induced by rifampicin and exogenously added H2O2 (positive control). We had earlier shown that the SCs in the MLP cultures inherently and naturally release significantly high levels of H2O2 into the medium. Addition of the SCs' culture supernatant, unlike the supernatant of the dimethylthiourea (H2O2 scavenger) exposed SCs, enhanced the survival of NCs. It indicated that NCs' survival required the H2O2 present in the SCs' supernatant. This H2O2 transcriptionally induced high levels of catalase-peroxidase (KatG) in the NCs. The naturally high KatG levels in the NCs significantly neutralised the endogenous H2O2 formed upon exposure to rifampicin or H2O2, thereby enhancing the survival of NCs against oxidative stress. The absence of such enhanced survival in the furA-katG and katG knockout (KO) mutants of NCs in the presence of wild-type SCs, confirmed the requirement of the H2O2 present in the SCs' supernatant and NCs' KatG for enhanced oxidative stress survival. The presence of SCs:NCs at 1:9 in the pulmonary tuberculosis patients' sputum alludes to the clinical significance of the finding.

5.
Antimicrob Agents Chemother ; 66(2): e0143121, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34843389

RESUMEN

Infections caused by Staphylococcus aureus are a leading cause of mortality. Treating infections caused by S. aureus is difficult due to resistance against most traditional antibiotics, including ß-lactams. We previously reported the presence of mutations in gdpP among S. aureus strains that were obtained by serial passaging in ß-lactam drugs. Similar mutations have recently been reported in natural S. aureus isolates that are either nonsusceptible or resistant to ß-lactam antibiotics. gdpP codes for a phosphodiesterase that cleaves cyclic-di-AMP (CDA), a newly discovered second messenger. In this study, we sought to identify the role of gdpP in ß-lactam resistance in S. aureus. Our results showed that gdpP-associated mutations caused loss of phosphodiesterase function, leading to increased CDA accumulation in the bacterial cytosol. Deletion of gdpP led to an enhanced ability of the bacteria to withstand a ß-lactam challenge (2 to 3 log increase in bacterial CFU) by promoting tolerance without enhancing MICs of ß-lactam antibiotics. Our results demonstrated that increased drug tolerance due to loss of GdpP function can provide a selective advantage in acquisition of high-level ß-lactam resistance. Loss of GdpP function thus increases tolerance to ß-lactams that can lead to its therapy failure and can permit ß-lactam resistance to occur more readily.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Tolerancia a Medicamentos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/genética , Resistencia betalactámica/genética , beta-Lactamas/farmacología
6.
Cells ; 10(5)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064643

RESUMEN

Twenty to thirty percent of the septating mycobacterial cells of the mid-log phase population showed highly deviated asymmetric constriction during division (ACD), while the remaining underwent symmetric constriction during division (SCD). The ACD produced short-sized cells (SCs) and normal/long-sized cells (NCs) as the sister-daughter cells, but with significant differential susceptibility to antibiotic/oxidative/nitrite stress. Here we report that, at 0.2% glycerol, formulated in the Middlebrook 7H9 medium, a significantly high proportion of the cells were divided by SCD. When the glycerol concentration decreased to 0.1% due to cell-growth/division, the ACD proportion gradually increased until the ACD:SCD ratio reached ~50:50. With further decrease in the glycerol levels, the SCD proportion increased with concomitant decrease in the ACD proportion. Maintenance of glycerol at 0.1%, through replenishment, held the ACD:SCD proportion at ~50:50. Transfer of the cells from one culture with a specific glycerol level to the supernatant from another culture, with a different glycerol level, made the cells change the ACD:SCD proportion to that of the culture from which the supernatant was taken. RT-qPCR data showed the possibility of diadenosine tetraphosphate phosphorylase (MSMEG_2932), phosphatidylinositol synthase (MSMEG_2933), and a Nudix family hydrolase (MSMEG_2936) involved in the ACD:SCD proportion-change in response to glycerol levels. We also discussed its physiological significance.


Asunto(s)
Glicerol/metabolismo , Mycobacterium bovis/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácido Anhídrido Hidrolasas/metabolismo , Antioxidantes/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Proliferación Celular , Medios de Cultivo , ADN Complementario/metabolismo , Glicerol/química , Humanos , Mutación , Estrés Oxidativo , Pirofosfatasas/metabolismo , ARN/metabolismo , Tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Hidrolasas Nudix
7.
ACS Chem Biol ; 13(6): 1447-1454, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29757604

RESUMEN

Diadenosine polyphosphates, Ap(2-7)A, which contain two adenosines in a 5',5' linkage through phosphodiester bonds involving 2-7 phosphates, regulate diverse cellular functions in all organisms, from bacteria to humans, under normal and stress conditions. We had earlier reported consistent occurrence of asymmetric constriction during division (ACD) in 20-30% of dividing mycobacterial cells in culture, irrespective of different growth media, implying exogenous action of some factor of mycobacterial origin. Consistent with this premise, concentrated culture supernatant (CCS), but not the equivalent volume-wise concentrated unused medium, dramatically enhanced the ACD proportion to 70-90%. Mass spectrometry and biochemical analyses of the bioactive fraction from CCS revealed the ACD-effecting factor to be Ap6A. Synthetic Ap6A showed a mass spectrometry profile, biochemical characteristics, and bioactivity identical to native Ap6A in the CCS. Thus, the present work reveals a novel role for Ap6A in generating cell-length asymmetry during mycobacterial cell-division and thereby cell-length heterogeneity in the population.


Asunto(s)
División Celular/efectos de los fármacos , Fosfatos de Dinucleósidos/metabolismo , Mycobacterium/citología , Mycobacterium/metabolismo , Fosfatos de Dinucleósidos/aislamiento & purificación , Mycobacterium smegmatis/citología , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/metabolismo
8.
Front Microbiol ; 8: 463, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28377757

RESUMEN

The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed from the SCDs of short-sized mother cells and having comparable growth rates, always showed comparable stress-susceptibility. These observations and the presence of M. tuberculosis SCs and NCs in pulmonary tuberculosis patients' sputum earlier reported by us imply a physiological role for the SCs and the NCs under the stress conditions. The plausible reasons for the higher stress susceptibility of SCs and lower stress susceptibility of NCs are discussed.

9.
Open Microbiol J ; 8: 40-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24949109

RESUMEN

In this study, we show that about 20% of the septating Mycobacterium smegmatis and Mycobacterium xenopi cells in the exponential phase populationdivideasymmetrically, with an unusually high deviation (17 ± 4%) in the division site from the median, to generate short cells and long cells, thereby generating population heterogeneity. This mode of division is very different from the symmetric division of themajority (about 80%) of the septating cells in the Mycobacterium smegmatis, Mycobacterium marinum, and Mycobacterium bovis BCG exponential phase population, with 5-10% deviation in the division site from the mid-cell site, as reported by recent studies. The short cells and the long cells further grew and divided to generate a population. We speculate that the generation of the short cells and the long cells through the highly deviated asymmetric divisionin the low proportions of mycobacterial population may have a role in stress tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...