RESUMEN
Women tend to face many problems throughout their lives; cervical cancer is one of the most dangerous diseases that they can face, and it has many negative consequences. Regular screening and treatment of precancerous lesions play a vital role in the fight against cervical cancer. It is becoming increasingly common in medical practice to predict the early stages of serious illnesses, such as heart attacks, kidney failure, and cancer, using machine learning-based techniques. To overcome these obstacles, we propose the use of auxiliary modules and a special residual block, to record contextual interactions between object classes and to support the object reference strategy. Unlike the latest state-of-the-art classification method, we create a new architecture called the Reinforcement Learning Cancer Network, "RL-CancerNet", which diagnoses cervical cancer with incredible accuracy. We trained and tested our method on two well-known publicly available datasets, SipaKMeD and Herlev, to assess it and enable comparisons with earlier methods. Cervical cancer images were labeled in this dataset; therefore, they had to be marked manually. Our study shows that, compared to previous approaches for the assignment of classifying cervical cancer as an early cellular change, the proposed approach generates a more reliable and stable image derived from images of datasets of vastly different sizes, indicating that it will be effective for other datasets.
RESUMEN
The realm of medical imaging is a critical frontier in precision diagnostics, where the clarity of the image is paramount. Despite advancements in imaging technology, noise remains a pervasive challenge that can obscure crucial details and impede accurate diagnoses. Addressing this, we introduce a novel teacher-student network model that leverages the potency of our bespoke NoiseContextNet Block to discern and mitigate noise with unprecedented precision. This innovation is coupled with an iterative pruning technique aimed at refining the model for heightened computational efficiency without compromising the fidelity of denoising. We substantiate the superiority and effectiveness of our approach through a comprehensive suite of experiments, showcasing significant qualitative enhancements across a multitude of medical imaging modalities. The visual results from a vast array of tests firmly establish our method's dominance in producing clearer, more reliable images for diagnostic purposes, thereby setting a new benchmark in medical image denoising.
Asunto(s)
Estudiantes , Tomografía Computarizada por Rayos X , Humanos , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos , AlgoritmosRESUMEN
In the advancement of medical image super-resolution (SR), the Deep Residual Feature Distillation Channel Attention Network (DRFDCAN) marks a significant step forward. This work presents DRFDCAN, a model that innovates traditional SR approaches by introducing a channel attention block that is tailored for high-frequency features-crucial for the nuanced details in medical diagnostics-while streamlining the network structure for enhanced computational efficiency. DRFDCAN's architecture adopts a residual-within-residual design to facilitate faster inference and reduce memory demands without compromising the integrity of the image reconstruction. This design strategy, combined with an innovative feature extraction method that emphasizes the utility of the initial layer features, allows for improved image clarity and is particularly effective in optimizing the peak signal-to-noise ratio (PSNR). The proposed work redefines efficiency in SR models, outperforming established frameworks like RFDN by improving model compactness and accelerating inference. The meticulous crafting of a feature extractor that effectively captures edge and texture information exemplifies the model's capacity to render detailed images, necessary for accurate medical analysis. The implications of this study are two-fold: it presents a viable solution for deploying SR technology in real-time medical applications, and it sets a precedent for future models that address the delicate balance between computational efficiency and high-fidelity image reconstruction. This balance is paramount in medical applications where the clarity of images can significantly influence diagnostic outcomes. The DRFDCAN model thus stands as a transformative contribution to the field of medical image super-resolution.
RESUMEN
Deep learning has achieved remarkably positive results and impacts on medical diagnostics in recent years. Due to its use in several proposals, deep learning has reached sufficient accuracy to implement; however, the algorithms are black boxes that are hard to understand, and model decisions are often made without reason or explanation. To reduce this gap, explainable artificial intelligence (XAI) offers a huge opportunity to receive informed decision support from deep learning models and opens the black box of the method. We conducted an explainable deep learning method based on ResNet152 combined with Grad-CAM for endoscopy image classification. We used an open-source KVASIR dataset that consisted of a total of 8000 wireless capsule images. The heat map of the classification results and an efficient augmentation method achieved a high positive result with 98.28% training and 93.46% validation accuracy in terms of medical image classification.