Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 159: 114232, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36630849

RESUMEN

AIM OF THE STUDY: Occurrence of hand-foot syndrome (HFS) during capecitabine treatment often results in treatment interruptions (26 %) or treatment discontinuation (17 %), and can severely decrease quality of life. In this study, we investigated whether single nucleotide polymorphisms (SNPs) in genes involved in capecitabine metabolism - other than DPYD - are associated with an increased risk for capecitabine-induced HFS. METHODS: Patients treated with capecitabine according to standard of care were enrolled after providing written informed consent for genotyping purposes. Prospectively collected blood samples were used to extract genomic DNA, which was subsequently genotyped for SNPs in CES1, CES2 and CDA. SNPs and clinical baseline factors that were univariably associated with HFS with P ≤ 0.10, were tested in a multivariable model using logistic regression. RESULTS: Of the 446 patients eligible for analysis, 146 (32.7 %) developed HFS, of whom 77 patients (17.3 %) experienced HFS ≥ grade 2. In the multivariable model, CES1 1165-33 C>A (rs2244613, minor allele frequency 19 %) and CDA 266 + 242 A>G (rs10916825, minor allele frequency 35 %) variant allele carriers were at higher risk of HFS ≥ grade 2 (OR 1.888; 95 %CI 1.075-3.315; P = 0.027 and OR 1.865; 95 %CI 1.087-3.200; P = 0.024, respectively). CONCLUSIONS: We showed that CES1 1165-33 C>A and CDA 266 + 242 A>G are significantly associated with HFS grade 2 and grade 3 in patients treated with capecitabine. Prospective studies should assess whether this increased risk can be mitigated in carriers of these SNPs, when pre-emptive genotyping is being followed by dose adjustment or by alternative treatment by a fluoropyrimidine that is not substrate to CES1, such as S1.


Asunto(s)
Antimetabolitos Antineoplásicos , Síndrome Mano-Pie , Humanos , Capecitabina/efectos adversos , Antimetabolitos Antineoplásicos/efectos adversos , Síndrome Mano-Pie/genética , Síndrome Mano-Pie/tratamiento farmacológico , Estudios Prospectivos , Pruebas de Farmacogenómica , Calidad de Vida , Fluorouracilo/efectos adversos
2.
Breast Cancer Res Treat ; 195(1): 65-74, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35842520

RESUMEN

INTRODUCTION: Endoxifen-the principal metabolite of tamoxifen-is subject to a high inter-individual variability in serum concentration. Numerous attempts have been made to explain this, but thus far only with limited success. By applying predictive modeling, we aimed to identify factors that determine the inter-individual variability. Our purpose was to develop a prediction model for endoxifen concentrations, as a strategy to individualize tamoxifen treatment by model-informed dosing in order to prevent subtherapeutic exposure (endoxifen < 16 nmol/L) and thus potential failure of therapy. METHODS: Tamoxifen pharmacokinetics with demographic and pharmacogenetic data of 303 participants of the prospective TOTAM study were used. The inter-individual variability in endoxifen was analyzed according to multiple regression techniques in combination with multiple imputations to adjust for missing data and bootstrapping to adjust for the over-optimism of parameter estimates used for internal model validation. RESULTS: Key predictors of endoxifen concentration were CYP2D6 genotype, age and weight, explaining altogether an average-based optimism corrected 57% (95% CI 0.49-0.64) of the inter-individual variability. CYP2D6 genotype explained 54% of the variability. The remaining 3% could be explained by age and weight. Predictors of risk for subtherapeutic endoxifen (< 16 nmol/L) were CYP2D6 genotype and age. The model showed an optimism-corrected discrimination of 90% (95% CI 0.86-0.95) and sensitivity and specificity of 66% and 98%, respectively. Consecutively, there is a high probability of misclassifying patients with subtherapeutic endoxifen concentrations based on the prediction rule. CONCLUSION: The inter-individual variability of endoxifen concentration could largely be explained by CYP2D6 genotype and for a small proportion by age and weight. The model showed a sensitivity and specificity of 66 and 98%, respectively, indicating a high probability of (misclassification) error for the patients with subtherapeutic endoxifen concentrations (< 16 nmol/L). The remaining unexplained inter-individual variability is still high and therefore model-informed tamoxifen dosing should be accompanied by therapeutic drug monitoring.


Asunto(s)
Neoplasias de la Mama , Antineoplásicos Hormonales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Citocromo P-450 CYP2D6/genética , Femenino , Genotipo , Humanos , Estudios Prospectivos , Tamoxifeno/análogos & derivados
3.
Front Genet ; 12: 711943, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306041

RESUMEN

Cytochrome P450 3A4 (CYP3A4) is the most important drug metabolizing enzyme in the liver, responsible for the oxidative metabolism of ∼50% of clinically prescribed drugs. Therefore, genetic variation in CYP3A4 could potentially affect the pharmacokinetics, toxicity and clinical outcome of drug treatment. Thus far, pharmacogenetics for CYP3A4 has not received much attention. However, the recent discovery of the intron 6 single-nucleotide polymorphism (SNP) rs35599367C > T, encoding the CYP3A4∗22 allele, led to several studies into the pharmacogenetic effect of CYP3A4∗22 on different drugs. This allele has a relatively minor allele frequency of 3-5% and an effect on CYP3A4 enzymatic activity. Thus far, no review summarizing the data published on several drugs is available yet. This article therefore addresses the current knowledge on CYP3A4∗22. This information may help in deciding if, and for which drugs, CYP3A4∗22 genotype-based dosing could be helpful in improving drug therapy. CYP3A4∗22 was shown to significantly influence the pharmacokinetics of several drugs, with currently being most thoroughly investigated tacrolimus, cyclosporine, and statins. Additional studies, focusing on toxicity and clinical outcome, are warranted to demonstrate clinical utility of CYP3A4∗22 genotype-based dosing.

4.
Cancers (Basel) ; 13(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673305

RESUMEN

Tamoxifen is a major option for adjuvant endocrine treatment in estrogen receptor (ER) positive breast cancer patients. The conversion of the prodrug tamoxifen into the most active metabolite endoxifen is mainly catalyzed by the enzyme cytochrome P450 2D6 (CYP2D6). Genetic variation in the CYP2D6 gene leads to altered enzyme activity, which influences endoxifen formation and thereby potentially therapy outcome. The association between genetically compromised CYP2D6 activity and low endoxifen plasma concentrations is generally accepted, and it was shown that tamoxifen dose increments in compromised patients resulted in higher endoxifen concentrations. However, the correlation between CYP2D6 genotype and clinical outcome is still under debate. This has led to genotype-based tamoxifen dosing recommendations by the Clinical Pharmacogenetic Implementation Consortium (CPIC) in 2018, whereas in 2019, the European Society of Medical Oncology (ESMO) discouraged the use of CYP2D6 genotyping in clinical practice for tamoxifen therapy. This paper describes the latest developments on CYP2D6 genotyping in relation to endoxifen plasma concentrations and tamoxifen-related clinical outcome. Therefore, we focused on Pharmacogenetic publications from 2018 (CPIC publication) to 2021 in order to shed a light on the current status of this debate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...