Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(13): 12565-12572, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033828

RESUMEN

Protonation of cyclopropanes and aziridines is well-studied, but reactions of phosphiranes with acids are rare and have not been reported to result in ring opening. Treatment of syn-Mes*PCH2CHR (Mes* = 2,4,6-(t-Bu)3C6H2, R = Me or Ph, syn-1-2) or anti-Mes*PCH2CHPh (anti-2) with triflic acid resulted in regiospecific anti-Markovnikov C-protonation with ring opening and cyclophosphination of a Mes* ortho-t-Bu group to yield the phospholanium cations [PH(CH2CH2R)(4,6-(t-Bu)2-2-CMe2CH2C6H2)][OTf] (R = Me or Ph, 3-4), which were deprotonated with NEt3 to give phospholanes 5-6. Enantioenriched or racemic syn-1 both gave racemic 3. The byproduct [Mes*PH(CH2CH2Me)(OH)][OTf] (7) was formed from syn-1 and HOTf in the presence of water. Density functional theory calculations suggested that P-protonation followed by ring opening and hydride migration to C yields the phosphenium ion, [Mes*P(CH2CH2Me)][OTf], which undergoes C-H oxidative addition of an o-t-Bu methyl group. This work established a new reactivity pattern for phosphiranes.

2.
Angew Chem Int Ed Engl ; 61(1): e202110753, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34755431

RESUMEN

Tetrahedral main-group compounds are normally configurationally stable, but P-epimerization of the chiral phosphiranium cations syn- or anti-[Mes*P(Me)CH2 CHPh][OTf] (Mes*=2,4,6-(t-Bu)3 C6 H2 ) occurred under mild conditions at 60 °C in CD2 Cl2 , resulting in isomerization to give a syn-enriched equilibrium mixture. Ion exchange with excess [NBu4 ][Δ-TRISPHAT] (Δ-TRISPHAT=Δ-P(o-C6 Cl4 O2 )3 ) followed by chromatography on silica removed [NBu4 ][OTf] and gave mixtures of syn- and anti-[Mes*P(Me)CH2 CHPh][Δ-TRISPHAT]⋅x[NBu4 ][Δ-TRISPHAT]. NMR spectroscopy showed that isomerization proceeded with epimerization at P and retention at C. DFT calculations are consistent with a mechanism involving P-C cleavage to yield a hyperconjugation-stabilized carbocation, pyramidal inversion promoted by σ-interaction of the P lone pair with the neighboring ß-carbocation, and ring closure with inversion of configuration at P.

3.
ChemSusChem ; 13(22): 5776, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33145938

RESUMEN

Invited for this month's cover is the group of Ben Harvey at the Naval Air Warfare Center, Weapons Division, China Lake. The image shows several examples of bio-based cycloalkanes that have been developed as next-generation sustainable jet fuels. The Review itself is available at 10.1002/cssc.202001641.

4.
ChemSusChem ; 13(22): 5777-5807, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32810345

RESUMEN

The development of sustainable energy solutions that reduce global carbon emissions, while maintaining high living standards, is one of the grand challenges of the current century. Transportation fuels are critical to economic development, globalization, and the advancement of society. Although ground vehicles and small aircraft are beginning a slow transition toward electric propulsion with energy sourced from solar radiation or wind, the extreme power requirements of jet aircraft require a more concentrated source of energy that is conveniently provided by liquid hydrocarbon fuels. This Review describes recent efforts to develop efficient routes for the conversion of crude biomass sources (e. g., lignocellulose) to cycloalkanes. These cycloalkanes impart advantageous properties to jet fuels, including increased density, higher volumetric heat of combustion, and enhanced operability. The combination of bio-based cycloalkanes and synthetic paraffinic kerosenes allows for the preparation of 100 % bio-based fuels that can outperform conventional petroleum-based fuels. In this Review methods are described that convert biomass-derived small molecules, including furfural, furfuryl alcohol, 5-hydroxymethylfurfural, cyclic ketones, phenolics, acyclic ketones, cyclic alcohols, furans, esters, and alkenes to high-density cycloalkanes. In addition to describing the chemical transformations and catalysts that have been developed to efficiently produce various cycloalkanes, this Review includes summaries of key fuel properties, which highlight the ability to generate fuels with customized performance metrics. This work is intended to inspire other researchers to study the conversion of sustainable feedstocks to full-performance aviation fuels. An acceleration of this research is critical to reducing the carbon footprint of commercial and military aviation on a timescale that will help blunt the impacts of global warming.

5.
Angew Chem Int Ed Engl ; 57(18): 5047-5051, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29484790

RESUMEN

Nucleophilic substitution results in inversion of configuration at the electrophilic carbon center (SN 2) or racemization (SN 1). The stereochemistry of the nucleophile is rarely considered, but phosphines, which have a high barrier to pyramidal inversion, attack electrophiles with retention of configuration at P. Surprisingly, cyclization of bifunctional secondary phosphine alkyl tosylates proceeded under mild conditions with inversion of configuration at the nucleophile to yield P-stereogenic syn-phosphiranes. DFT studies suggested that the novel stereochemistry results from acid-promoted tosylate dissociation to yield an intermediate phosphenium-bridged cation, which undergoes syn-selective cyclization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA