Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
J Neuroinflammation ; 21(1): 194, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097742

RESUMEN

Chronic neuroinflammation and microglial activation are key mediators of the secondary injury cascades and cognitive impairment that follow exposure to repetitive mild traumatic brain injury (r-mTBI). Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed on microglia and brain resident myeloid cell types and their signaling plays a major anti-inflammatory role in modulating microglial responses. At chronic timepoints following injury, constitutive PPARγ signaling is thought to be dysregulated, thus releasing the inhibitory brakes on chronically activated microglia. Increasing evidence suggests that thiazolidinediones (TZDs), a class of compounds approved from the treatment of diabetes mellitus, effectively reduce neuroinflammation and chronic microglial activation by activating the peroxisome proliferator-activated receptor-γ (PPARγ). The present study used a closed-head r-mTBI model to investigate the influence of the TZD Pioglitazone on cognitive function and neuroinflammation in the aftermath of r-mTBI exposure. We revealed that Pioglitazone treatment attenuated spatial learning and memory impairments at 6 months post-injury and reduced the expression of reactive microglia and astrocyte markers in the cortex, hippocampus, and corpus callosum. We then examined whether Pioglitazone treatment altered inflammatory signaling mechanisms in isolated microglia and confirmed downregulation of proinflammatory transcription factors and cytokine levels. To further investigate microglial-specific mechanisms underlying PPARγ-mediated neuroprotection, we generated a novel tamoxifen-inducible microglial-specific PPARγ overexpression mouse line and examined its influence on microglial phenotype following injury. Using RNA sequencing, we revealed that PPARγ overexpression ameliorates microglial activation, promotes the activation of pathways associated with wound healing and tissue repair (such as: IL10, IL4 and NGF pathways), and inhibits the adoption of a disease-associated microglia-like (DAM-like) phenotype. This study provides insight into the role of PPARγ as a critical regulator of the neuroinflammatory cascade that follows r-mTBI in mice and demonstrates that the use of PPARγ agonists such as Pioglitazone and newer generation TZDs hold strong therapeutic potential to prevent the chronic neurodegenerative sequelae of r-mTBI.


Asunto(s)
Disfunción Cognitiva , Microglía , PPAR gamma , Pioglitazona , Animales , Masculino , Ratones , Conmoción Encefálica/metabolismo , Conmoción Encefálica/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , PPAR gamma/metabolismo
2.
J Neuroinflammation ; 21(1): 130, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750510

RESUMEN

Epidemiological studies have unveiled a robust link between exposure to repetitive mild traumatic brain injury (r-mTBI) and elevated susceptibility to develop neurodegenerative disorders, notably chronic traumatic encephalopathy (CTE). The pathogenic lesion in CTE cases is characterized by the accumulation of hyperphosphorylated tau in neurons around small cerebral blood vessels which can be accompanied by astrocytes that contain phosphorylated tau, the latter termed tau astrogliopathy. However, the contribution of tau astrogliopathy to the pathobiology and functional consequences of r-mTBI/CTE or whether it is merely a consequence of aging remains unclear. We addressed these pivotal questions by utilizing a mouse model harboring tau-bearing astrocytes, GFAPP301L mice, subjected to our r-mTBI paradigm. Despite the fact that r-mTBI did not exacerbate tau astrogliopathy or general tauopathy, it increased phosphorylated tau in the area underneath the impact site. Additionally, gene ontology analysis of tau-bearing astrocytes following r-mTBI revealed profound alterations in key biological processes including immunological and mitochondrial bioenergetics. Moreover, gene array analysis of microdissected astrocytes accrued from stage IV CTE human brains revealed an immunosuppressed astroglial phenotype similar to tau-bearing astrocytes in the GFAPP301L model. Additionally, hippocampal reduction of proteins involved in water transport (AQP4) and glutamate homeostasis (GLT1) was found in the mouse model of tau astrogliopathy. Collectively, these findings reveal the importance of understanding tau astrogliopathy and its role in astroglial pathobiology under normal circumstances and following r-mTBI. The identified mechanisms using this GFAPP301L model may suggest targets for therapeutic interventions in r-mTBI pathogenesis in the context of CTE.


Asunto(s)
Acuaporina 4 , Astrocitos , Transportador 2 de Aminoácidos Excitadores , Ratones Transgénicos , Tauopatías , Proteínas tau , Animales , Humanos , Masculino , Ratones , Acuaporina 4/metabolismo , Acuaporina 4/genética , Astrocitos/metabolismo , Astrocitos/patología , Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Ratones Endogámicos C57BL , Fenotipo , Proteínas tau/metabolismo , Proteínas tau/genética , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/genética
3.
Exp Neurol ; 374: 114702, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301863

RESUMEN

Repetitive mild traumatic brain injuries (r-mTBI) sustained in the military or contact sports have been associated with the accumulation of extracellular tau in the brain, which may contribute to the pathogenesis of neurodegenerative tauopathies. The expression of the apolipoprotein E4 (apoE4) isoform has been associated with higher levels of tau in the brain, and worse clinical outcomes after r-mTBI, though the influence of apoE genotype on extracellular tau dynamics in the brain is poorly understood. We recently demonstrated that extracellular tau can be eliminated across blood-brain barrier (BBB), which is progressively impaired following r-mTBI. The current studies investigated the influence of repetitive mild TBI (r-mTBI) and apoE genotype on the elimination of extracellular solutes from the brain. Following intracortical injection of biotin-labeled tau into humanized apoE-Tr mice, the levels of exogenous tau residing in the brain of apoE4 mice were elevated compared to other isoforms, indicating reduced tau elimination. Additionally, we found exposure to r-mTBI increased tau residence in apoE2 mice, similar to our observations in E2FAD animals. Each of these findings may be the result of diminished tau efflux via LRP1 at the BBB, as LRP1 inhibition significantly reduced tau uptake in endothelial cells and decreased tau transit across an in vitro model of the BBB (basolateral-to-apical). Notably, we showed that injury and apoE status, (particularly apoE4) resulted in chronic alterations in BBB integrity, pericyte coverage, and AQP4 polarization. These aberrations coincided with an atypical reactive astrocytic gene signature indicative of diminished CSF-ISF exchange. Our work found that CSF movement was reduced in the chronic phase following r-mTBI (>18 months post injury) across all apoE genotypes. In summary, we show that apoE genotype strongly influences cerebrovascular homeostasis, which can lead to age-dependent deficiencies in the elimination of toxic proteins from the brain, like tau, particularly in the aftermath of head trauma.


Asunto(s)
Apolipoproteína E4 , Conmoción Encefálica , Ratones , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Ratones Transgénicos , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Conmoción Encefálica/metabolismo
4.
Neurol Res ; 46(3): 253-260, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38095353

RESUMEN

OBJECTIVES: It has been shown that peripheral measures of brain-derived neurotrophic factor (BNDF), an important neurotrophin instrumental to the biology of learning, may contribute to predicting cognitive decline. However, the two primary forms of BDNF, mature (mBDNF) and pro (proBDNF), and how they contribute to cognition longitudinally has not been well studied. METHODS: Eighty-two older adults (average age 72.2 ± 6.4 years) provided blood samples at two time points separated on average by 4.2 years while participating in an annual memory screening that included the MoCA (Montreal Cognitive Assessment) and GDS (Geriatric Depression Scale). Both mBDNF and proBDNF from serum were quantified at each time point. Whole blood samples were genotyped for APOE and BDNF Val66Met. RESULTS: Using logistic regression analysis controlling for age, sex, baseline MoCA score, APOE, and BDNF, higher baseline mBDNF was associated with subjects whose screening score was near maximum or maximum (as defined by MoCA score of 29 or 30) at the second collection visit. APOE was a significant contributing factor; however, BDNF Val66Met was not. Using a similar logistic regression analysis, baseline proBDNF was not found to be associated with future cognition. DISCUSSION: This study further supports that mBDNF measured in the serum of older adults may reflect a protective role while proBDNF requires further investigation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Disfunción Cognitiva , Humanos , Anciano , Factor Neurotrófico Derivado del Encéfalo/genética , Vida Independiente , Cognición , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/genética , Apolipoproteínas E
5.
Neurotrauma Rep ; 4(1): 643-654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37786567

RESUMEN

Currently approved blood biomarkers detect intracranial lesions in adult patients with mild to moderate traumatic brain injury (TBI) acutely post-injury. However, blood biomarkers are still needed to help with a differential diagnosis of mild TBI (mTBI) and post-traumatic stress disorder (PTSD) at chronic post-injury time points. Owing to the association between phospholipid (PL) dysfunction and chronic consequences of TBI, we hypothesized that examining bioactive PL metabolites (oxylipins and ethanolamides) would help identify long-term lipid changes associated with mTBI and PTSD. Lipid extracts of plasma from active-duty soldiers deployed to the Iraq/Afghanistan wars (control = 52, mTBI = 21, PTSD = 34, and TBI + PTSD = 13) were subjected to liquid chromatography/mass spectrometry analysis to examine oxylipins and ethanolamides. Linear regression analyses followed by post hoc comparisons were performed to assess the association of these lipids with diagnostic classifications. Significant differences were found in oxylipins derived from arachidonic acid (AA) between controls and mTBI, PTSD, and mTBI + PTSD groups. Levels of AA-derived oxylipins through the cytochrome P450 pathways and anandamide were significantly elevated among mTBI + PTSD patients who were carriers of the apolipoprotein E E4 allele. These studies demonstrate that AA-derived oxylipins and anandamide may be unique blood biomarkers of PTSD and mTBI + PTSD. Further, these AA metabolites may be indicative of an underlying inflammatory process that warrants further investigation. Future validation studies in larger cohorts are required to determine a potential application of this approach in providing a differential diagnosis of mTBI and PTSD in a clinical setting.

6.
Mol Ther Methods Clin Dev ; 29: 303-318, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37359418

RESUMEN

Traumatic optic neuropathy (TON) is a condition in which acute injury to the optic nerve from direct or indirect trauma results in vision loss. The most common cause of TON is indirect injury to the optic nerve caused by concussive forces that are transmitted to the optic nerve. TON occurs in up to 5% of closed-head trauma patients and there is currently no known effective treatment. One potential treatment option for TON is ST266, a cell-free biological solution containing the secretome of amnion-derived multipotent progenitor (AMP) cells. We investigated the efficacy of intranasal ST266 in a mouse model of TON induced by blunt head trauma. Injured mice treated with a 10-day regimen of ST266 showed an improvement in spatial memory and learning, a significant preservation of retinal ganglion cells, and a decrease in neuropathological markers in the optic nerve, optic tract, and dorsal lateral geniculate nucleus. ST266 treatment effectively downregulated the NLRP3 inflammasome-mediated neuroinflammation pathway after blunt trauma. Overall, treatment with ST266 was shown to improve functional and pathological outcomes in a mouse model of TON, warranting future exploration of ST266 as a cell-free therapeutic candidate for testing in all optic neuropathies.

7.
J Clin Transl Res ; 9(1): 50-58, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-37032999

RESUMEN

Background and Aim: Bacopa monnieri is an Ayurvedic herb that has been used for multiple conditions, most notably to augment cognition, particularly memory and attention. Multiple mechanisms, including raising brain-derived neurotrophic factor (BDNF), have been proposed and investigated in animal models that require translational studies in humans. Methods: Bacopa was administered in an open-labeled study to cognitively healthy controls over a 3-month period. Cognition and mood were assessed using the Montreal Cognitive Assessment (MoCA) and geriatric depression scale (GDS) at the baseline and 3-month visit. Laboratories were assessed for safety and serum levels of mature (mBDNF) and proBDNF were quantified. In a subset of subjects, intracellular signaling processes were assessed using western blot analysis. Results: Bacopa was provided to 35 subjects and was well-tolerated except for 4 (11%) subjects who early terminated due to known, reversible, and gastrointestinal side effects (i.e., nausea, diarrhea). Over the 3 months, the GDS and the total MoCA did not significantly change; however, the delayed-recall subscale significantly improved (baseline: 3.8 ± 1.2, 3-months: 4.3 ± 0.9; P = 0.032). Serum mBDNF and proBDNF levels did not significantly change. Cyclic AMP response element-binding protein (CREB) phosphorylation significantly increased (P = 0.028) and p65 nuclear factor kappa B (NF-κB) phosphorylation significantly decreased (P = 0.030). Conclusion: These results suggest that Bacopa may exert an anti-inflammatory effect through NF-κB and improve intracellular signaling processes associated with synaptogenesis (CREB). The future placebo-controlled studies are recommended. Relevance for Patients: B. monnieri will require larger, blinded trials to better understand potential mechanisms, interactions, and utilization.

8.
Mol Cell Neurosci ; 125: 103855, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084991

RESUMEN

Traumatic brain injury is a leading cause of morbidity and mortality in adults and children in developed nations. Following the primary injury, microglia, the resident innate immune cells of the CNS, initiate several inflammatory signaling cascades and pathophysiological responses that may persist chronically; chronic neuroinflammation following TBI has been closely linked to the development of neurodegeneration and neurological dysfunction. Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that have been shown to regulate several key mechanisms in the inflammatory response to TBI. Increasing evidence has shown that the modulation of the PI3K/AKT signaling pathway has the potential to influence the cellular response to inflammatory stimuli. However, directly targeting PI3K signaling poses several challenges due to its regulatory role in several cell survival pathways. We have previously identified that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), the major negative regulator of PI3K/AKT signaling, is dysregulated following exposure to repetitive mild traumatic brain injury (r-mTBI). Moreover, this dysregulated PI3K/AKT signaling was correlated with chronic microglial-mediated neuroinflammation. Therefore, we interrogated microglial-specific PTEN as a therapeutic target in TBI by generating a microglial-specific, Tamoxifen inducible conditional PTEN knockout model using a CX3CR1 Cre recombinase mouse line PTENfl/fl/CX3CR1+/CreERT2 (mcg-PTENcKO), and exposed them to our 20-hit r-mTBI paradigm. Animals were treated with tamoxifen at 76 days post-last injury, and the effects of microglia PTEN deletion on immune-inflammatory responses were assessed at 90-days post last injury. We observed that the deletion of microglial PTEN ameliorated the proinflammatory response to repetitive brain trauma, not only reducing chronic microglial activation and proinflammatory cytokine production but also rescuing TBI-induced reactive astrogliosis, demonstrating that these effects extended beyond microglia alone. Additionally, we observed that the pharmacological inhibition of PTEN with BpV(HOpic) ameliorated the LPS-induced activation of microglial NFκB signaling in vitro. Together, these data provide support for the role of PTEN as a regulator of chronic neuroinflammation following repetitive mild TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Microglía , Animales , Ratones , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
9.
Curr Res Transl Med ; 71(1): 103362, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36436355

RESUMEN

BACKGROUND: The apolipoprotein E (APOE) ε4 allele, involved in fatty acid (FA) metabolism, is a major genetic risk factor for Alzheimer's disease (AD). This study examined the influence of APOE genotypes on blood and brain markers of the L-carnitine system, necessary for fatty acid oxidation (FAO), and their collective influence on the clinical and pathological outcomes of AD. METHODS: L-carnitine, its metabolites γ-butyrobetaine (GBB) and trimethylamine-n-oxide (TMAO), and its esters (acylcarnitines) were analyzed in blood from predominantly White community/clinic-based individuals (n = 372) and in plasma and brain from the Religious Order Study (ROS) (n = 79) using liquid chromatography tandem mass spectrometry (LC-MS/MS). FINDINGS: Relative to total blood acylcarnitines, levels of short chain acylcarnitines (SCAs) were higher whereas long chain acylcarnitines (LCAs) were lower in AD, which was observed pre-clinically in APOE ε4s. Plasma medium chain acylcarnitines (MCAs) were higher amongst cognitively healthy APOE ε2 carriers relative to other genotypes. Compared to their respective controls, elevated TMAO and lower L-carnitine and GBB were associated with AD clinical diagnosis and these differences were detected preclinically among APOE ε4 carriers. Plasma and brain GBB, TMAO, and acylcarnitines were also associated with post-mortem brain amyloid, tau, and cerebrovascular pathologies. INTERPRETATION: Alterations in blood L-carnitine, GBB, TMAO, and acylcarnitines occur early in clinical AD progression and are influenced by APOE genotype. These changes correlate with post-mortem brain AD and cerebrovascular pathologies. Additional studies are required to better understand the role of the FAO disturbances in AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Carnitina/metabolismo , Apolipoproteínas E/genética , Encéfalo , Ácidos Grasos
10.
Acta Neuropathol Commun ; 10(1): 147, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36258255

RESUMEN

Chemical and pharmaceutical exposures have been associated with the development of Gulf War Illness (GWI), but how these factors interact with the pathophysiology of traumatic brain injury (TBI) remains an area of study that has received little attention thus far. We studied the effects of pyridostigmine bromide (an anti-nerve agent) and permethrin (a pesticide) exposure in a mouse model of repetitive mild TBI (r-mTBI), with 5 impacts over a 9-day period, followed by Gulf War (GW) toxicant exposure for 10 days beginning 30 days after the last head injury. We then assessed the chronic behavioral and pathological sequelae 5 months after GW agent exposure. We observed that r-mTBI and GWI cumulatively affect the spatial memory of mice in the Barnes maze and result in a shift of search strategies employed by r-mTBI/GW exposed mice. GW exposure also produced anxiety-like behavior in sham animals, but r-mTBI produced disinhibition in both the vehicle and GW treated mice. Pathologically, GW exposure worsened r-mTBI dependent axonal degeneration and neuroinflammation, increased oligodendrocyte cell counts, and increased r-mTBI dependent phosphorylated tau, which was found to colocalize with oligodendrocytes in the corpus callosum. These results suggest that GW exposures may worsen TBI-related deficits. Veterans with a history of both GW chemical exposures as well as TBI may be at higher risk for worse symptoms and outcomes. Subsequent exposure to various toxic substances can influence the chronic nature of mTBI and should be considered as an etiological factor influencing mTBI recovery.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Plaguicidas , Ratones , Animales , Guerra del Golfo , Conmoción Encefálica/complicaciones , Bromuro de Piridostigmina/toxicidad , Permetrina/toxicidad , Modelos Animales de Enfermedad , Preparaciones Farmacéuticas
11.
Mol Brain ; 15(1): 62, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35850691

RESUMEN

Repetitive mild traumatic brain injury (r-mTBI) is the most widespread type of brain trauma worldwide. The cumulative injury effect triggers long-lasting pathological and molecular changes that may increase risk of chronic neurodegenerative diseases. R-mTBI is also characterized by changes in the brain proteome, where the majority of molecules altered early post-TBI are different from those altered at more chronic phases. This differentiation may contribute to the heterogeneity of available data on potential therapeutic targets and may present an obstacle in developing effective treatments. Here, we aimed to characterize a proteome profile of r-mTBI in a mouse model at two time points - 3 and 24 weeks post last TBI, as this may be a more relevant therapeutic window for individuals suffering negative consequences of r-mTBI. We identified a great number of proteins and phosphoproteins that remain continuously dysregulated from 3 to 24 weeks. These proteins may serve as effective therapeutic targets for sub-acute and chronic stages of post r-mTBI. We also compared canonical pathway activation associated with either total proteins or phosphoproteins and revealed that they both are upregulated at 24 weeks. However, at 3 weeks post-TBI, only pathways associated with total proteins are upregulated, while pathways driven by phosphoproteins are downregulated. Finally, to assess the translatability of our data, we compared proteomic changes in our mouse model with those reported in autopsied human samples of Chronic Traumatic Encephalopathy (CTE) patients compared to controls. We observed 39 common proteins that were upregulated in both species and 24 common pathways associated with these proteins. These findings support the translational relevance of our mouse model of r-mTBI for successful identification and translation of therapeutic targets.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Encefalopatía Traumática Crónica , Animales , Conmoción Encefálica/complicaciones , Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Enfermedad Crónica , Encefalopatía Traumática Crónica/complicaciones , Modelos Animales de Enfermedad , Humanos , Ratones , Fosfoproteínas , Proteoma , Proteómica
12.
Mult Scler Relat Disord ; 63: 103818, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35523060

RESUMEN

BACKGROUND: There is limited data regarding adaptive immunity in older persons with Multiple Sclerosis (MS). OBJECTIVE: The aim of the present study was to quantify adaptive immune cells in younger (age less than 50) and older (age greater than 50) with MS in the context of clinical parameters (EDSS, 25-foot walk, SDMT). Subjects were either Untreated (no MS medications in 6 months), taking Injectables (interferons or glatiramer acetate), or Other approved MS treatments. RESULTS: A total of 72 subjects were enrolled (30 younger and 42 older). Older MS patients that were Untreated or taking Injectables had lower CD8 cell counts. Older MS patients demonstrated increased levels of CD4+CD25hi cells and inflammatory serum cytokines (TNF-α, IL-8). There was suggestion that MS treatments modulated IL-10. Cognition as assessed by SDMT was associated with disease duration and IL-10. CONCLUSION: Components of adaptive immunity are influenced by aging in MS which may also impact aspects of cognition as measured by SDMT.


Asunto(s)
Esclerosis Múltiple , Envejecimiento , Citocinas , Acetato de Glatiramer/uso terapéutico , Humanos , Interleucina-10 , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/tratamiento farmacológico
13.
Sci Rep ; 12(1): 4797, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314754

RESUMEN

Alzheimer's disease (AD) represents the most common form of dementia in the elderly with no available disease modifying treatments. Altered gut microbial composition has been widely acknowledged as a common feature of AD, which potentially contributes to progression or onset of AD. To assess the hypothesis that Candida rugosa lipase (CRL), which has been shown to enhance gut microbiome and metabolite composition, can rebalance the gut microbiome composition and reduce AD pathology, the treatment effects in APPswe/PS1de9 (APP/PS1) mice were investigated. The analysis revealed an increased abundance of Acetatifactor and Clostridiales vadin BB60 genera in the gut; increased lipid hydrolysis in the gut lumen, normalization of peripheral unsaturated fatty acids, and reduction of neuroinflammation and memory deficits post treatment. Finally, we demonstrated that the evoked benefits on memory could be transferred via fecal matter transplant (FMT) into antibiotic-induced microbiome-depleted (AIMD) wildtype mice, ameliorating their memory deficits. The findings herein contributed to improve our understanding of the role of the gut microbiome in AD's complex networks and suggested that targeted modification of the gut could contribute to amelioration of AD neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Clostridiales/metabolismo , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/fisiología , Lipasa , Trastornos de la Memoria , Ratones , Ratones Transgénicos
14.
J Transl Med ; 20(1): 73, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123492

RESUMEN

BACKGROUND: Nearly 250,000 veterans from the 1990-1991 Gulf War have Gulf War Illness (GWI), a condition with heterogeneous pathobiology that remains difficult to diagnose. As such, availability of blood biomarkers that reflect the underlying biology of GWI would help clinicians provide appropriate care to ill veterans. In this study, we measured blood lipids to examine the influence of sex on the association between blood lipids and GWI diagnosis. METHODS: Plasma lipid extracts from GWI (n = 100) and control (n = 45) participants were subjected to reversed-phase nano-flow liquid chromatography-mass spectrometry analysis. RESULTS: An influence of sex and GWI case status on plasma neutral lipid and phospholipid species was observed. Among male participants, triglycerides, diglycerides, and phosphatidylcholines were increased while cholesterol esters were decreased in GWI cases compared to controls. In female participants, ceramides were increased in GWI cases compared to controls. Among male participants, unsaturated triglycerides, phosphatidylcholine and diglycerides were increased while unsaturated cholesterol esters were lower in GWI cases compared to controls. The ratio of arachidonic acid- to docosahexaenoic acid-containing triglyceride species was increased in female and male GWI cases as compared to their sex-matched controls. CONCLUSION: Differential modulation of neutral lipids and ratios of arachidonic acid to docosahexaenoic acid in male veterans with GWI suggest metabolic dysfunction and inflammation. Increases in ceramides among female veterans with GWI also suggest activation of inflammatory pathways. Future research should characterize how these lipids and their associated pathways relate to GWI pathology to identify biomarkers of the disorder.


Asunto(s)
Síndrome del Golfo Pérsico , Veteranos , Biomarcadores , Femenino , Guerra del Golfo , Humanos , Masculino , Síndrome del Golfo Pérsico/diagnóstico , Síndrome del Golfo Pérsico/metabolismo , Fosfolípidos
15.
Front Aging Neurosci ; 14: 1059017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36688151

RESUMEN

With age the apolipoprotein E (APOE) E4 allele (involved in lipid homeostasis) is associated with perturbation of bioenergetics pathways in Alzheimer's disease (AD). We therefore hypothesized that in aging mice APOE genotype would affect the L-carnitine system (central to lipid bioenergetics), in the brain and in the periphery. Using liquid chromatography-mass spectrometry, levels of L-carnitine and associated metabolites: γ-butyrobetaine (GBB), crotonobetaine, as well as acylcarnitines, were evaluated at 10-, 25-, and 50-weeks, in the brain and the periphery, in a targeted replacement mouse model of human APOE (APOE-TR). Aged APOE-TR mice were also orally administered 125 mg/kg of L-carnitine daily for 7 days followed by evaluation of brain, liver, and plasma L-carnitine system metabolites. Compared to E4-TR, an age-dependent increase among E2- and E3-TR mice was detected for medium- and long-chain acylcarnitines (MCA and LCA, respectively) within the cerebrovasculature and brain parenchyma. While following L-carnitine oral challenge, E4-TR mice had higher increases in the L-carnitine metabolites, GBB and crotonobetaine in the brain and a reduction of plasma to brain total acylcarnitine ratios compared to other genotypes. These studies suggest that with aging, the presence of the E4 allele may contribute to alterations in the L-carnitine bioenergetic system and to the generation of L-carnitine metabolites that could have detrimental effects on the vascular system. Collectively the E4 allele and aging may therefore contribute to AD pathogenesis through aging-related lipid bioenergetics as well as cerebrovascular dysfunctions.

16.
Fluids Barriers CNS ; 18(1): 48, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702292

RESUMEN

Repetitive head trauma has been associated with the accumulation of tau species in the brain. Our prior work showed brain vascular mural cells contribute to tau processing in the brain, and that these cells progressively degenerate following repetitive mild traumatic brain injury (r-mTBI). The current studies investigated the role of the cerebrovasculature in the elimination of extracellular tau from the brain, and the influence of r-mTBI on these processes. Following intracranial injection of biotin-labeled tau, the levels of exogenous labeled tau residing in the brain were elevated in a mouse model of r-mTBI at 12 months post-injury compared to r-sham mice, indicating reduced tau elimination from the brain following head trauma. This may be the result of decreased caveolin-1 mediated tau efflux at the blood-brain barrier (BBB), as the caveolin inhibitor, methyl-ß-cyclodextrin, significantly reduced tau uptake in isolated cerebrovessels and significantly decreased the basolateral-to-apical transit of tau across an in vitro model of the BBB. Moreover, we found that the upstream regulator of endothelial caveolin-1, Mfsd2a, was elevated in r-mTBI cerebrovessels compared to r-sham, which coincided with a decreased expression of cerebrovascular caveolin-1 in the chronic phase following r-mTBI (> 3 months post-injury). Lastly, angiopoietin-1, a mural cell-derived protein governing endothelial Mfsd2a expression, was secreted from r-mTBI cerebrovessels to a greater extent than r-sham animals. Altogether, in the chronic phase post-injury, release of angiopoietin-1 from degenerating mural cells downregulates caveolin-1 expression in brain endothelia, resulting in decreased tau elimination across the BBB, which may describe the accumulation of tau species in the brain following head trauma.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
17.
J Transl Med ; 19(1): 370, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454515

RESUMEN

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex illness which disproportionally affects females. This illness is associated with immune and metabolic perturbations that may be influenced by lipid metabolism. We therefore hypothesized that plasma lipids from ME/CFS patients will provide a unique biomarker signature of disturbances in immune, inflammation and metabolic processes associated with ME/CFS. METHODS: Lipidomic analyses were performed on plasma from a cohort of 50 ME/CFS patients and 50 controls (50% males and similar age and ethnicity per group). Analyses were conducted with nano-flow liquid chromatography (nLC) and high-performance liquid chromatography (HPLC) systems coupled with a high mass accuracy ORBITRAP mass spectrometer, allowing detection of plasma lipid concentration ranges over three orders of magnitude. We examined plasma phospholipids (PL), neutral lipids (NL) and bioactive lipids in ME/CFS patients and controls and examined the influence of sex on the relationship between lipids and ME/CFS diagnosis. RESULTS: Among females, levels of total phosphatidylethanolamine (PE), omega-6 arachidonic acid-containing PE, and total hexosylceramides (HexCer) were significantly decreased in ME/CFS compared to controls. In males, levels of total HexCer, monounsaturated PE, phosphatidylinositol (PI), and saturated triglycerides (TG) were increased in ME/CFS patients compared to controls. Additionally, omega-6 linoleic acid-derived oxylipins were significantly increased in male ME/CFS patients versus male controls. Principal component analysis (PCA) identified three major components containing mostly PC and a few PE, PI and SM species-all of which were negatively associated with headache and fatigue severity, irrespective of sex. Correlations of oxylipins, ethanolamides and ME/CFS symptom severity showed that lower concentrations of these lipids corresponded with an increase in the severity of headaches, fatigue and cognitive difficulties and that this association was influenced by sex. CONCLUSION: The observed sex-specific pattern of dysregulated PL, NL, HexCer and oxylipins in ME/CFS patients suggests a possible role of these lipids in promoting immune dysfunction and inflammation which may be among the underlying factors driving the clinical presentation of fatigue, chronic pain, and cognitive difficulties in ill patients. Further evaluation of lipid metabolism pathways is warranted to better understand ME/CFS pathogenesis.


Asunto(s)
Síndrome de Fatiga Crónica , Biomarcadores , Cognición , Femenino , Humanos , Inflamación , Masculino , Dolor
18.
Mol Brain ; 14(1): 110, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238312

RESUMEN

Cerebrovascular dysfunction is a hallmark feature of Alzheimer's disease (AD). One of the greatest risk factors for AD is the apolipoprotein E4 (E4) allele. The APOE4 genotype has been shown to negatively impact vascular amyloid clearance, however, its direct influence on the molecular integrity of the cerebrovasculature compared to other APOE variants (APOE2 and APOE3) has been largely unexplored. To address this, we employed a 10-plex tandem isobaric mass tag approach in combination with an ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method, to interrogate unbiased proteomic changes in cerebrovessels from AD and healthy control brains with different APOE genotypes. We first interrogated changes between healthy control cases to identify underlying genotype specific effects in cerebrovessels. EIF2 signaling, regulation of eIF4 and 70S6K signaling and mTOR signaling were the top significantly altered pathways in E4/E4 compared to E3/E3 cases. Oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction were the top significant pathways in E2E2 vs E3/E3cases. We also identified AD-dependent changes and their interactions with APOE genotype and found the highest number of significant proteins from this interaction was observed in the E3/E4 (192) and E4/E4 (189) cases. As above, EIF2, mTOR signaling and eIF4 and 70S6K signaling were the top three significantly altered pathways in E4 allele carriers (i.e. E3/E4 and E4/E4 genotypes). Of all the cerebrovascular cell-type specific markers identified in our proteomic analyses, endothelial cell, astrocyte, and smooth muscle cell specific protein markers were significantly altered in E3/E4 cases, while endothelial cells and astrocyte specific protein markers were altered in E4/E4 cases. These proteomic changes provide novel insights into the longstanding link between APOE4 and cerebrovascular dysfunction, implicating a role for impaired autophagy, ER stress, and mitochondrial bioenergetics. These APOE4 dependent changes we identified could provide novel cerebrovascular targets for developing disease modifying strategies to mitigate the effects of APOE4 genotype on AD pathogenesis.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Encéfalo/irrigación sanguínea , Encéfalo/patología , Demencia/genética , Predisposición Genética a la Enfermedad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Proteoma/metabolismo , Proteómica , Fracciones Subcelulares/metabolismo
19.
Neurosci Insights ; 16: 26331055211018458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34104887

RESUMEN

Gulf War Illness is a multisymptomatic condition which affects 30% of veterans from the 1991 Gulf War. While there is evidence for a role of peripheral cellular and humoral adaptive immune responses in Gulf War Illness, a potential role of the adaptive immune system in the central nervous system pathology of this condition remains unknown. Furthermore, many of the clinical features of Gulf War Illness resembles those of autoimmune diseases, but the biological processes are likely different as the etiology of Gulf War Illness is linked to hazardous chemical exposures specific to the Gulf War theatre. This review discusses Gulf War chemical-induced maladaptive immune responses and a potential role of cellular and humoral immune responses that may be relevant to the central nervous system symptoms and pathology of Gulf War Illness. The discussion may stimulate investigations into adaptive immunity for developing novel therapies for Gulf War Illness.

20.
Front Aging Neurosci ; 13: 658605, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079449

RESUMEN

Cerebrovascular dysfunction and cerebral amyloid angiopathy (CAA) are hallmark features of Alzheimer's disease (AD). Molecular damage to cerebrovessels in AD may result in alterations in vascular clearance mechanisms leading to amyloid deposition around blood vessels and diminished neurovascular-coupling. The sequelae of molecular events leading to these early pathogenic changes remains elusive. To address this, we conducted a comprehensive in-depth molecular characterization of the proteomic changes in enriched cerebrovessel fractions isolated from the inferior frontal gyrus of autopsy AD cases with low (85.5 ± 2.9 yrs) vs. high (81 ± 4.4 yrs) CAA score, aged-matched control (87.4 ± 1.5 yrs) and young healthy control (47 ± 3.3 yrs) cases. We employed a 10-plex tandem isobaric mass tag approach in combination with our ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method. Enriched cerebrovascular fractions showed very high expression levels of proteins specific to endothelial cells, mural cells (pericytes and smooth muscle cells), and astrocytes. We observed 150 significantly regulated proteins in young vs. aged control cerebrovessels. The top pathways significantly modulated with aging included chemokine, reelin, HIF1α and synaptogenesis signaling pathways. There were 213 proteins significantly regulated in aged-matched control vs. high CAA cerebrovessels. The top three pathways significantly altered from this comparison were oxidative phosphorylation, Sirtuin signaling pathway and TCA cycle II. Comparison between low vs. high CAA cerebrovessels identified 84 significantly regulated proteins. Top three pathways significantly altered between low vs. high CAA cerebrovessels included TCA Cycle II, Oxidative phosphorylation and mitochondrial dysfunction. Notably, high CAA cases included more advanced AD pathology thus cerebrovascular effects may be driven by the severity of amyloid and Tangle pathology. These descriptive proteomic changes provide novel insights to explain the age-related and AD-related cerebrovascular changes contributing to AD pathogenesis. Particularly, disturbances in energy bioenergetics and mitochondrial biology rank among the top AD pathways altered in cerebrovessels. Targeting these failed mechanisms in endothelia and mural cells may provide novel disease modifying targets for developing therapeutic strategies against cerebrovascular deterioration and promoting cerebral perfusion in AD. Our future work will focus on interrogating and validating these novel targets and pathways and their functional significance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...