Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999148

RESUMEN

Radiolabeled peptides are valuable tools for diagnosis or therapies; they are often radiofluorinated using an indirect approach based on an F-18 prosthetic group. Herein, we are reporting our results on the F-18 radiolabeling of three peptides using two different methods based on click reactions. The first one used the well-known CuAAC reaction, and the second one is based on our recently reported hetero-Diels-Alder (HDA) using a dithioesters (thia-Diels-Alder) reaction. Both methods have been automated, and the 18F-peptides were obtained in similar yields and synthesis time (37-39% decay corrected yields by both methods in 120-140 min). However, to obtain similar yields, the CuAAC needs a large amount of copper along with many additives, while the HDA is a catalyst and metal-free reaction necessitating only an appropriate ratio of water/ethanol. The HDA can therefore be considered as a minimalist method offering easy access to fluorine-18 labeled peptides and making it a valuable additional tool for the indirect and site-specific labeling of peptides or biomolecules.


Asunto(s)
Química Clic , Cobre , Reacción de Cicloadición , Radioisótopos de Flúor , Péptidos , Química Clic/métodos , Radioisótopos de Flúor/química , Péptidos/química , Cobre/química , Marcaje Isotópico/métodos , Automatización , Catálisis , Radiofármacos/química , Radiofármacos/síntesis química
2.
Pharmacology ; 109(4): 216-230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38569476

RESUMEN

INTRODUCTION: Acute myeloid leukemia (AML) is a cancer of the hematopoietic system characterized by hyperproliferation of undifferentiated cells of the myeloid lineage. While most of AML therapies are focused toward tumor debulking, all-trans retinoic acid (ATRA) induces neutrophil differentiation in the AML subtype acute promyelocytic leukemia (APL). Macroautophagy has been extensively investigated in the context of various cancers and is often dysregulated in AML where it can have context-dependent pro- or anti-leukemogenic effects. On the contrary, the implications of chaperone-mediated autophagy (CMA) on the pathophysiology of diseases are still being explored and its role in AML remains elusive. METHODS: We took advantage of human AML primary samples and databases to analyze CMA gene expression and activity. Furthermore, we used ATRA-sensitive (NB4) and -resistant (NB4-R1) APL cells to further dissect a potential function for CMA in ATRA-mediated neutrophil differentiation. NB4-R1 cells are unique in that they do respond to retinoic acid transcriptionally but do not mature in response to retinoid signaling alone unless maturation is triggered by adding cyclic adenosine monophosphate. RESULTS: Here, we report that CMA-related mRNA transcripts are significantly higher expressed in immature hematopoietic cells as compared to neutrophils, contrasting the macroautophagy gene expression patterns. Accordingly, lysosomal degradation of an mCherry-KFERQ CMA reporter decreases during ATRA-induced differentiation of APL cells. On the other hand, using NB4-R1 cells we found that macroautophagy flux primed ATRA-resistant NB4-R1 cells to differentiate upon ATRA treatment but reduced the association of lysosome-associated membrane protein type 2A (LAMP-2A) and heat shock protein family A (Hsp70) member 8 (HSPA8), necessary for complete neutrophil maturation. Accordingly, depletion of HSPA8 attenuated CMA activity and facilitated APL cell differentiation. In contrast, maintaining high CMA activity by ectopic expression of LAMP-2A impeded APL differentiation. CONCLUSION: Overall, our findings suggest that APL neutrophil differentiation requires CMA inactivation and that this pathway predominantly depends on HSPA8 and is possibly assisted by other co-chaperones.


Asunto(s)
Diferenciación Celular , Autofagia Mediada por Chaperones , Proteínas del Choque Térmico HSC70 , Leucemia Promielocítica Aguda , Tretinoina , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Leucemia Promielocítica Aguda/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Tretinoina/farmacología , Autofagia Mediada por Chaperones/efectos de los fármacos , Línea Celular Tumoral , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSC70/genética , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Antineoplásicos/farmacología
3.
Trends Pharmacol Sci ; 45(1): 81-101, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102020

RESUMEN

Many aspects of cell homeostasis and integrity are maintained by the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. The NLRP3 oligomeric protein complex assembles in response to exogenous and endogenous danger signals. This inflammasome has also been implicated in the pathogenesis of a range of disease conditions, particularly chronic inflammatory diseases. Given that NLRP3 modulates autophagy, which is also a key regulator of inflammasome activity, excessive inflammation may be controlled by targeting this intersecting pathway. However, specific niche areas of NLRP3-autophagy interactions and their reciprocal regulatory mechanisms remain underexplored. Consequently, we lack treatment methods specifically targeting this pivotal axis. Here, we discuss the potential of such strategies in the context of autoimmune and metabolic diseases and propose some research avenues.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Autofagia , Inflamación/metabolismo , Lisosomas/metabolismo , Lisosomas/patología
4.
Clin Rev Allergy Immunol ; 65(2): 206-230, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37505416

RESUMEN

Epstein-Barr virus (EBV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are extraordinary in their ability to activate autoimmunity as well as to induce diverse autoimmune diseases. Here we reviewed the current knowledge on their relation. Further, we suggested that molecular mimicry could be a possible common mechanism of autoimmunity induction in the susceptible individuals infected with SARS-CoV-2. Molecular mimicry between SARS-CoV-2 and human proteins, and EBV and human proteins, are present. Besides, relation of the pathogenicity associated with both coronavirus diseases and EBV supports the notion. As a proof-of-the-concept, we investigated 8mer sequences with shared 5mers of SARS-CoV-2, EBV, and human proteins, which were predicted as epitopes binding to the same human leukocyte antigen (HLA) supertype representatives. We identified significant number of human peptide sequences with predicted-affinities to the HLA-A*02:01 allele. Rest of the peptide sequences had predicted-affinities to the HLA-A*02:01, HLA-B*40:01, HLA-B*27:05, HLA-A*01:01, and HLA-B*39:01 alleles. Carriers of these serotypes can be under a higher risk of autoimmune response induction upon getting infected, through molecular mimicry-based mechanisms common to SARS-CoV-2 and EBV infections. We additionally reviewed established associations of the identified proteins with the EBV-related pathogenicity and with the autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Infecciones por Virus de Epstein-Barr , Humanos , SARS-CoV-2 , Herpesvirus Humano 4 , Autoinmunidad , Virulencia , Antígenos HLA-B , Péptidos , Antígenos HLA-A
5.
J Transl Autoimmun ; 6: 100199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065621

RESUMEN

The first LBMR-Tim (Toulouse Referral Medical Laboratory of Immunology) symposium convened on December 16, 2022 in Toulouse, France to address challenging questions in systemic lupus erythematosus (SLE). Special focus was put on (i) the role played by genes, sex, TLR7, and platelets on SLE pathophysiology; (ii) autoantibodies, urinary proteins, and thrombocytopenia contribution at the time of diagnosis and during follow-up; (iii) neuropsychiatric involvement, vaccine response in the COVID-19 era, and lupus nephritis management at the clinical frontline; and (iv) therapeutic perspectives in patients with lupus nephritis and the unexpected adventure of the Lupuzor/P140 peptide. The multidisciplinary panel of experts further supports the concept that a global approach including basic sciences, translational research, clinical expertise, and therapeutic development have to be prioritized in order to better understand and then improve the management of this complex syndrome.

6.
Nat Rev Nephrol ; 19(6): 366-383, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36894628

RESUMEN

Lysosomes are catabolic organelles that contribute to the degradation of intracellular constituents through autophagy and of extracellular components through endocytosis, phagocytosis and macropinocytosis. They also have roles in secretory mechanisms, the generation of extracellular vesicles and certain cell death pathways. These functions make lysosomes central organelles in cell homeostasis, metabolic regulation and responses to environment changes including nutrient stresses, endoplasmic reticulum stress and defects in proteostasis. Lysosomes also have important roles in inflammation, antigen presentation and the maintenance of long-lived immune cells. Their functions are tightly regulated by transcriptional modulation via TFEB and TFE3, as well as by major signalling pathways that lead to activation of mTORC1 and mTORC2, lysosome motility and fusion with other compartments. Lysosome dysfunction and alterations in autophagy processes have been identified in a wide variety of diseases, including autoimmune, metabolic and kidney diseases. Deregulation of autophagy can contribute to inflammation, and lysosomal defects in immune cells and/or kidney cells have been reported in inflammatory and autoimmune pathologies with kidney involvement. Defects in lysosomal activity have also been identified in several pathologies with disturbances in proteostasis, including autoimmune and metabolic diseases such as Parkinson disease, diabetes mellitus and lysosomal storage diseases. Targeting lysosomes is therefore a potential therapeutic strategy to regulate inflammation and metabolism in a variety of pathologies.


Asunto(s)
Enfermedades Autoinmunes , Lisosomas , Humanos , Lisosomas/metabolismo , Autofagia , Transducción de Señal , Inflamación/metabolismo , Enfermedades Autoinmunes/metabolismo
7.
Autoimmun Rev ; 22(6): 103315, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36924921

RESUMEN

The emergence of novel targeted therapies and the tools that increase the stability and delivery of drugs have greatly improved treatment outcomes in autoimmune diseases (ADs). Recently-developed strategies deplete specific deleterious T- and B-cell subsets, interrupt receptor-ligand interactions, and/or inhibit the secretion or activity of inflammatory mediators linked to tissue damage. Although generally efficient, these lines of intervention have limitations, with documented cases of drug-resistance and undesired side effects. They are also difficult to apply to non-organ-specific ADs, where the trigger and effector antigens are unknown and in which autoimmune activity is widely spread throughout the body. The potential of cellular modulators that act at a distance from the affected site, by abscopal effect, as described in the case of cancer radio- and immuno-therapy might be especially efficient in the context of ADs. Future research to discover small molecule- and peptide-based treatments will need to explore potential drugs with abscopal effects that could elicit potent immune tolerance and clinical quiescence to restore quality of life of affected patients.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Autoinmunidad , Calidad de Vida , Neoplasias/tratamiento farmacológico , Descubrimiento de Drogas
8.
Trends Pharmacol Sci ; 44(1): 15-19, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563658

RESUMEN

A multicountry outbreak of monkeypox has gained global attention. Basic research including structural and immunological investigation on monkeypox virus (MPXV) is central to design effective solutions of treatment with antivirals and appropriate vaccines. We summarize some information about this virus and its re-emergence and the current vaccines that are proposed to limit its spread and present some possible avenues for developing new vaccines.


Asunto(s)
Mpox , Humanos , Mpox/prevención & control , Monkeypox virus
9.
Cells ; 11(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36496970

RESUMEN

Gout is a painful form of inflammatory arthritis characterized by the deposition of monosodium urate (MSU) crystals in the joints. The aim of this study was to investigate the effect of peptide P140 on the inflammatory responses in crystal-induced mouse models of gout and cell models including MSU-treated human cells. Injection of MSU crystals into the knee joint of mice induced neutrophil influx and inflammatory hypernociception. Injection of MSU crystals subcutaneously into the hind paw induced edema and increased pro-inflammatory cytokines levels. Treatment with P140 effectively reduced hypernociception, the neutrophil influx, and pro-inflammatory cytokine levels in these experimental models. Furthermore, P140 modulated neutrophils chemotaxis in vitro and increased apoptosis pathways through augmented caspase 3 activity and reduced NFκB phosphorylation. Moreover, P140 increased the production of the pro-resolving mediator annexin A1 and decreased the expression of the autophagy-related ATG5-ATG12 complex and HSPA8 chaperone protein. Overall, these findings suggest that P140 exerts a significant beneficial effect in a neutrophilic inflammation observed in the model of gout that can be of special interest in the design of new therapeutic strategies.


Asunto(s)
Artritis Gotosa , Gota , Ratones , Humanos , Animales , Ácido Úrico , Fosfopéptidos/farmacología , Gota/tratamiento farmacológico , Gota/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Neutrófilos/metabolismo , Modelos Animales de Enfermedad , Artritis Gotosa/tratamiento farmacológico
10.
J Transl Autoimmun ; 5: 100171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425003

RESUMEN

Long COVID is a collection of symptoms as a late sequelae of SARS-CoV-2 infection. It often includes mental symptoms such as cognitive symptoms, persisting loss of smell and taste, in addition to exertional dyspnea. A role of various autoantibodies (autoAbs) has been postulated in long-COVID and is being further investigated. With the goal of identifying potentially unknown autoAbs, we screened plasma of patients with long COVID on in-house post-translationally modified protein macroarrays including citrullinated, SUMOylated and acetylated membranes. SUMO1ylated isoform DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 35 (SUMO1-DHX35) was identified as only candidate antigen. In adult patients with long COVID, IgG autoAbs against SUMO1-DHX35 of IgG class were found in seven of 71 (9.8%) plasma samples, of IgM and IgG class in one of 69 (1.4%) samples, not in 200 healthy adult controls, not in 442 healthy children, and 146 children after SARS-CoV-2 infection. All autoAb-positive seven patients were female. AutoAb titers ranged between 200 to up to 400 By point mutagenesis and expression of FLAG-tagged mutants of DHX35 in HEK293 cells, and subsequent SUMOylation of purified constructs, lysine 53 was identified as a unique, never yet identified, SUMOylation site. The autoAbs had no reactivity against the non-SUMO1ylated mutant (K53R) of DHX35. To summarize, autoAbs against SUMO1-DHX35 were identified in adult female patients with long-COVID. Further studies are needed to verify the frequency of occurrence. The function of DHX35 has not yet been determined and there is no available information in relation to disease implication. The molecular mechanism causing the SUMOylation, the potential functional consequences of this post-translational modification on DHX35, and a potential pathogenicity of the autoAbs against SUMO1-DHX35 in COVID-19 and other possible contexts remain to be elucidated.

11.
Cell Mol Life Sci ; 79(10): 518, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36104457

RESUMEN

In our search for innovative drugs that could improve periodontal treatment outcomes, autophagy and its anomalies represent a potential target for therapeutic intervention. We sought to identify autophagy defects in murine experimental periodontitis and study the effectiveness of P140, a phosphopeptide known to bind HSPA8 and inhibit its chaperone properties, and that corrects autophagy dysfunctions in several autoimmune and inflammatory diseases. Experimental periodontitis was induced by placing silk ligature around mandibular first molars. Sick mice were treated intraperitoneally with either P140 or a control, scrambled peptide. After 10 days, mandibles were harvested and bone loss was measured by micro-CT. Immune cells infiltration was studied by histological analyses. Cytokines levels and autophagy-related markers expression were evaluated by qRT-PCR and western blotting. A comparison with non-affected mice revealed significant alterations in the autophagy processes in mandibles of diseased mice, especially in the expression of sequestosome 1/p62, Maplc3b, Atg5, Ulk1, and Lamp2. In vivo, we showed that P140 normalized the dysregulated expression of several autophagy-related genes. In addition, it diminished the infiltration of activated lymphocytes and pro-inflammatory cytokines. Unexpectedly P140 decreased the extent of bone loss affecting the furcation and alveolar areas. Our results indicate that P140, which was safe in clinical trials including hundreds of autoimmune patients with systemic lupus erythematosus, not only decreases the inflammatory effects observed in mandibular tissues of ligation-induced mice but strikingly also contributes to bone preservation. Therefore, the therapeutic peptide P140 could be repositioned as a decisive breakthrough for the future therapeutic management of periodontitis.


Asunto(s)
Fragmentos de Péptidos , Periodontitis , Animales , Citocinas/genética , Modelos Animales de Enfermedad , Ratones , Fragmentos de Péptidos/farmacología , Periodontitis/tratamiento farmacológico , Fosfopéptidos
12.
Cells ; 11(15)2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35954305

RESUMEN

Innate immunity responds to infections and inflammatory stimuli through a carefully choreographed set of interactions between cells, stimuli and their specific receptors. Of particular importance are endogenous peptides, which assume roles as defensins or alarmins, growth factors or wound repair inducers. LL-37, a proteolytic fragment of cathelicidin, fulfills the roles of a defensin by inserting into the membranes of bacterial pathogens, functions as alarmin in stimulating chemotaxis of innate immune cells, and alters the structure and efficacy of various cytokines. Here, we draw attention to the direct effect of LL-37 on neutrophils and the release of extracellular traps (NETs), as NETs have been established as mediators of immune defense against pathogens but also as important contributors to chronic disease and tissue pathogenesis. We propose a specific structural basis for LL-37 function, in part by highlighting the structural flexibility of LL-37 and its ability to adapt to distinct microenvironments and interacting counterparts.


Asunto(s)
Trampas Extracelulares , Bacterias , Quimiotaxis , Inmunidad Innata , Neutrófilos/metabolismo
13.
Front Immunol ; 13: 904669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720371

RESUMEN

In systemic lupus erythematosus, T cells display multiple abnormalities. They are abnormally activated, secrete pro-inflammatory cytokines, help B cells to generate pathogenic autoantibodies, and provoke the accumulation of autoreactive memory T cells. P140, a synthetic peptide evaluated in phase-III clinical trials for lupus, binds HSPA8/HSC70 chaperone protein. In vitro and in vivo, it interferes with hyperactivated chaperone-mediated autophagy, modifying overexpression of major histocompatibility complex class II molecules and antigen presentation to autoreactive T cells. Here, we show that in P140-treated lupus mice, abnormalities affecting T and B cells are no longer detectable in secondary lymphoid tissue and peripheral blood. Data indicate that P140 acts by depleting hyper-activated autoreactive T and B cells and restores normal immune homeostasis. Our findings suggest that P140 belongs to a new family of non-immunosuppressive immunoregulators that do not correct T and B cell abnormalities but rather contribute to the clearance of deleterious T and B cells.


Asunto(s)
Lupus Eritematoso Sistémico , Fragmentos de Péptidos , Animales , Presentación de Antígeno , Linfocitos B , Proteínas del Choque Térmico HSC70 , Ratones , Fragmentos de Péptidos/metabolismo
14.
J Autoimmun ; 128: 102814, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35298976

RESUMEN

Inflammatory bowel disease (IBD) is a serious public health problem in Western society with a continuing increase in incidence worldwide. Safe, targeted medicines for IBD are not yet available. Autophagy, a vital process implicated in normal cell homeostasis, provides a potential point of entry for the treatment of IBDs, as several autophagy-related genes are associated with IBD risk. We conducted a series of experiments in three distinct mouse models of colitis to test the effectiveness of therapeutic P140, a phosphopeptide that corrects autophagy dysfunctions in other autoimmune and inflammatory diseases. Colitis was experimentally induced in mice by administering dextran sodium sulfate and 2,4,6 trinitrobenzene sulfonic acid. Transgenic mice lacking both il-10 and iRhom2 - involved in tumor necrosis factor α secretion - were also used. In the three models investigated, P140 treatment attenuated the clinical and histological severity of colitis. Post-treatment, altered expression of several macroautophagy and chaperone-mediated autophagy markers, and of pro-inflammatory mediators was corrected. Our results demonstrate that therapeutic intervention with an autophagy modulator improves colitis in animal models. These findings highlight the potential of therapeutic peptide P140 for use in the treatment of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Autofagia , Proteínas Portadoras , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Sulfato de Dextran , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/metabolismo , Lisosomas/metabolismo , Ratones
15.
Cells ; 10(12)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34944054

RESUMEN

Cellular quality control systems have gained much attention in recent decades. Among these, autophagy is a natural self-preservation mechanism that continuously eliminates toxic cellular components and acts as an anti-ageing process. It is vital for cell survival and to preserve homeostasis. Several cell-type-dependent canonical or non-canonical autophagy pathways have been reported showing varying degrees of selectivity with regard to the substrates targeted. Here, we provide an updated review of the autophagy machinery and discuss the role of various forms of autophagy in neurodegenerative diseases, with a particular focus on Parkinson's disease. We describe recent findings that have led to the proposal of therapeutic strategies targeting autophagy to alter the course of Parkinson's disease progression.


Asunto(s)
Autofagia , Lisosomas/metabolismo , Terapia Molecular Dirigida , Enfermedad de Parkinson/patología , Animales , Humanos , Mitofagia , Mutación/genética
16.
Front Pharmacol ; 12: 752194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744730

RESUMEN

Dysregulation of CXCL12/SDF-1-CXCR4/CD184 signaling is associated with inflammatory diseases and notably with systemic lupus erythematosus. Issued from the lead molecule chalcone-4, the first neutraligand of the CXCL12 chemokine, LIT-927 was recently described as a potent analogue with improved solubility and stability. We aimed to investigate the capacity of LIT-927 to correct immune alterations in lupus-prone MRL/lpr mice and to explore the mechanism of action implemented by this small molecule in this model. We found that in contrast to AMD3100, an antagonist of CXCR4 and agonist of CXCR7, LIT-927 reduces the excessive number of several B/T lymphocyte subsets occurring in the blood of sick MRL/lpr mice (including CD3+/CD4-/CD8-/B220+ double negative T cells). In vitro, LIT-927 downregulated the overexpression of several activation markers on splenic MRL/lpr lymphocytes. It exerted effects on the CXCR4 pathway in MRL/lpr CD4+ T spleen cells. The results underline the importance of the CXCL12/CXCR4 axis in lupus pathophysiology. They indicate that neutralizing CXCL12 by the neutraligand LIT-927 can attenuate hyperactive lymphocytes in lupus. This mode of intervention might represent a novel strategy to control a common pathophysiological mechanism occurring in inflammatory diseases.

17.
Cells ; 10(9)2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34572117

RESUMEN

The involvement of autophagy and its dysfunction in asthma is still poorly documented. By using a murine model of chronic house dust mite (HDM)-induced airway inflammation, we tested the expression of several autophagy markers in the lung and spleen of asthma-like animals. Compared to control mice, in HDM-sensitized and challenged mice, the expression of sequestosome-1/p62, a multifunctional adaptor protein that plays an important role in the autophagy machinery, was raised in the splenocytes. In contrast, its expression was decreased in the neutrophils recovered from the bronchoalveolar fluid, indicating that autophagy was independently regulated in these two compartments. In a strategy of drug repositioning, we treated allergen-sensitized mice with the therapeutic peptide P140 known to target chaperone-mediated autophagy. A single intravenous administration of P140 in these mice resulted in a significant reduction in airway resistance and elastance, and a reduction in the number of neutrophils and eosinophils present in the bronchoalveolar fluid. It corrected the autophagic alteration without showing any suppressive effect in the production of IgG1 and IgE. Collectively, these findings show that autophagy processes are altered in allergic airway inflammation. This cellular pathway may represent a potential therapeutic target for treating selected patients with asthma.


Asunto(s)
Asma/complicaciones , Hipersensibilidad/complicaciones , Inflamación/prevención & control , Pulmón/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Pyroglyphidae/patogenicidad , Animales , Asma/patología , Autofagia , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Modelos Animales de Enfermedad , Eosinófilos/inmunología , Femenino , Hipersensibilidad/patología , Inmunoglobulina E/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Pyroglyphidae/química , Proteína Sequestosoma-1/metabolismo
18.
Leukemia ; 35(10): 2759-2770, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34462526

RESUMEN

Lysosomes, since their discovery, have been primarily known for degrading cellular macromolecules. However, in recent studies, they have begun to emerge as crucial regulators of cell homeostasis. They are at the crossroads of catabolic and anabolic pathways and are intricately involved in cellular trafficking, nutrient signaling, energy metabolism, and immune regulation. Their involvement in such essential cellular functions has renewed clinical interest in targeting the lysosome as a novel way to treat disease, particularly cancer. Acute myeloid leukemia (AML) is an aggressive blood cancer with a low survival probability, particularly in older patients. The genomic landscape of AML has been extensively characterized but few targeted therapies (with the exception of differentiation therapy) can achieve a long-term cure. Therefore, there is an unmet need for less intensive and more tolerable therapeutic interventions. In this review, we will give an overview on the myriad of functions performed by lysosomes and their importance in malignant disease. Furthermore, we will discuss their relevance in hematopoietic cells and different ways to potentially target them in AML.


Asunto(s)
Leucemia Mieloide Aguda/patología , Lisosomas/patología , Animales , Humanos , Terapia Molecular Dirigida/métodos , Transducción de Señal/fisiología
19.
Am J Reprod Immunol ; 86(6): e13494, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34407240

RESUMEN

INTRODUCTION: Oogenesis, the process of egg production by the ovary, involves a complex differentiation program leading to the production of functional oocytes. This process comprises a sequential pathway of steps that are finely regulated. The question related to SARS-CoV-2 infection and fertility has been evoked for several reasons, including the mechanism of molecular mimicry, which may contribute to female infertility by leading to the generation of deleterious autoantibodies, possibly contributing to the onset of an autoimmune disease in infected patients. OBJECTIVE: The immunological potential of the peptides shared between SARS-CoV-2 spike glycoprotein and oogenesis-related proteins; Thus we planned a systematic study to improve our understanding of the possible effects of SARS-CoV-2 infection on female fertility using the angle of molecular mimicry as a starting point. METHODS: A library of 82 human proteins linked to oogenesis was assembled at random from UniProtKB database using oogenesis, uterine receptivity, decidualization, and placentation as a key words. For the analyses, an artificial polyprotein was built by joining the 82 a sequences of the oogenesis-associated proteins. These were analyzed by searching the Immune Epitope DataBase for immunoreactive SARS-CoV-2 spike glycoprotein epitopes hosting the shared pentapeptides. RESULTS: SARS-CoV-2 spike glycoprotein was found to share 41 minimal immune determinants, that is, pentapeptides, with 27 human proteins that relate to oogenesis, uterine receptivity, decidualization, and placentation. All the shared pentapeptides that we identified, with the exception of four, are also present in SARS-CoV-2 spike glycoprotein-derived epitopes that have been experimentally validated as immunoreactive.


Asunto(s)
Imitación Molecular , Oogénesis/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Epítopos , Femenino , Humanos
20.
J Autoimmun ; 120: 102633, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33932829

RESUMEN

Naturally-occurring autoantibodies to certain components of autophagy processes have been described in a few autoimmune diseases, but their fine specificity, their relationships with clinical phenotypes, and their potential pathogenic functions remain elusive. Here, we explored IgG autoantibodies reacting with a panel of cytoplasmic endosomal/lysosomal antigens and individual heat-shock proteins, all of which share links to autophagy. Sera from autoimmune patients and from MRL/lpr and NZB/W lupus-prone mice reacted with the C-terminal residues of lysosome-associated membrane glycoprotein (LAMP)2A. No cross-reaction was observed with LAMP2B or LAMP2C variants, with dsDNA or mononucleosomes, or with heat-shock protein A8. Moreover, administering chromatography-purified LAMP2A autoantibodies to MRL/lpr mice accelerated mortality. Furthermore, flow cytometry revealed elevated cell-surface expression of LAMP2A on MRL/lpr B cells. These findings reveal the involvement of a new class of autoantibodies targeting the C-terminus of LAMP2A, a receptor for cytosolic proteins targeted for degradation via chaperone-mediated autophagy. These autoantibodies could affect the autophagy process, which is abnormally upregulated in lupus. The data presented support a novel connection between autophagy dysregulation, autoimmune processes and pathophysiology in lupus.


Asunto(s)
Antígenos/inmunología , Susceptibilidad a Enfermedades/inmunología , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/metabolismo , Lisosomas/inmunología , Animales , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Autoinmunidad , Autofagia/inmunología , Biomarcadores , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Endosomas/inmunología , Endosomas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Proteínas de Choque Térmico/inmunología , Humanos , Inmunoglobulina G/inmunología , Lupus Eritematoso Sistémico/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/inmunología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Endogámicos MRL lpr , Péptidos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...